
1995

APPLICATION NOTE

SOFTWARE BASICS

µPD784026 SUBSERIES
µPD784915 SUBSERIES

Document No. U10095EJ1V0AN00 (1st edition)
Date Published November 1995 P
Printed in Japan

78K/IV SERIES
16-BIT SINGLE-CHIP MICROCOMPUTER

©

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
“Standard“, “Special“, and “Specific“. The Specific quality grade applies only to devices developed based on
a customer designated “quality assurance program“ for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices in “Standard“ unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.

M7 94.11

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these
products may be prohibited without governmental license. To export or re-export some or all of these products from a
country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

PREFACE

Target Users This application note is for engineers who wish to understand 78K/IV Series devices

and design application programs using these devices.

78K/IV Series

• µPD784026 Subseries: µPD784020, 784021, 784025, 784026, 78P4026

• µPD784915 Subseries: µPD784915Note , 78P4916Note

Note Under development

Objective The purpose of this application note is to use program examples to help users to

understand the basic functions of 78K/IV Series devices.

The program and hardware structures published here are illustrative examples and

are not designed for mass production.

Organization This application note describes the basic numeric operation programs.

Application Area The 78K/IV Series devices have a 1-MB program memory space and are capable

of high-speed instruction execution and low-voltage operation, making them

suitable for a wide range of applications, including the following:

• Portable telephones • VCRs

• CD-ROMs • Printers

• HDDs • Audio systems, etc.

• Cameras

Legend The symbols and notations used in this manual have the following meanings:

Significance of the data description: The left side is high-order data and the right

side is low-order data.

Active-low description : xxx (line above pin and signal names)

Note : Explanation of the note attached to the text

Caution : Contents that should be read carefully

Remark : Supplemental explanation of the text

Number descriptions : Binary numbers ... xxxxxxxxB

: Decimal numbers ... xxxx

: Hexadecimal numbers ... xxxxH

Easily confused characters : 0 (zero), O (oh)

: 1 (one), l (lowercase letter), I (uppercase

letter)

Special Function Register (SFR) Description

Do not attempt to enter a combination of codes indicated in “Setting

Prohibited” in the register charts provided throughout this document.

Example of Special Function Register (SFR) Description

Remark Throughout this application note, those register bits that must be set are indicated by shading.

When using a register, refer to the provided example as necessary.

EDC * * 1 0 x x* * 1 0

This bit is set according
to the operationto be
performed.

Set according to the function
used. Bits marked ** are set to
either 0 or 1.

Set this bit to 1.

Set this bit to 0.

This bit is 0 or 1 when
read.

Set this bit to 0 or 1. Operation
is not affected regardless of
whether this bit is set to 0 or 1.

Read operation Write operation

Special function register name

STBC

STP HLT

0 1

1 0

0 0

1 1

CK1 CK0

0 0

0 1

1 0

1 1

Selection of internal system
clock

Example

Operation mode

Normal operation mode

HALT mode

STOP mode

IDLE mode

fxx/2 (12.5 MHz)

fxx/4 (6.25 MHz)

fxx/8 (3.125 MHz)

fxx/16 (1.5625 MHz)

(fxx = 25 MHz)

0 0 CK1 CK0 x 0 STP HLT

0 0 0 1 0 0 0 0

7 6 5 4 3 2 1 0

Related Documents The related documents indicated in this publication may include preliminary

versions. However, preliminary versions are not marked as such.

• Documents common to 78K/IV series devices

Document name
Document number

Japanese English

User’s Manual, Instruction IEU-844 IEU-1386

Application Note, Software Basics This manual —

Instruction Table IEM-5580 —

Instruction Set IEM-5572 —

78K Series Selection Guide IF-258 IF-1141

Development Tool Selection Guide EF-219 EF-1111

• Individual documents

µPD784026 subseries

Document name
Document number

Japanese English

µPD784020, 784021 Data Sheet IC-8776 IP-3234

µPD784025, 784026 Data Sheet IC-8722 IP-3230

µPD78P4026 Data Sheet IC-8734 IP-3231

µPD784026 Subseries Special Function Register Table IEM-5579 —

µPD784026 Subseries User’s Manual, Hardware IEU-850 IEU-1379

µPD784026 Subseries Application Note, Hardware Basics In preparation —

µPD784915 subseries

Document name
Document number

Japanese English

µPD784915 Product Information IP-9130 —

µPD78P4916 Product Information IP-9178 —

µPD784915 Subseries Special Function Register Table IEM-5602 —

µPD784915 Subseries User’s Manual, Hardware IEU-850 —

Caution The related documents described above may be changed without notice. Always use the

newest document when designing.

[MEMO]

- i -

CONTENTS

CHAPTER 1 GENERAL .. 1

1.1 READING THIS DOCUMENT.. 1

1.2 USING APPLICATION PROGRAMS... 2

1.3 FEATURES OF 78K/IV SERIES DEVICES .. 2

1.4 PROGRAM ... 3

CHAPTER 2 BINARY OPERATIONS .. 5

2.1 BINARY ADDITION OF SIGNED 32 BITS + 32 BITS .. 5

2.2 BINARY SUBTRACTION OF SIGNED 32 BITS – 32 BITS 10

2.3 BINARY MULTIPLICATION OF SIGNED 32 BITS x 32 BITS............................... 15

2.4 BINARY DIVISION OF SIGNED 32 BITS/32 BITS ... 24

CHAPTER 3 DECIMAL OPERATIONS .. 35

3.1 DECIMAL ADDITION OF SIGNED 8 DIGITS + 8 DIGITS 36

3.2 DECIMAL SUBTRACTION OF SIGNED 8 DIGITS – 8 DIGITS 45

3.3 DECIMAL MULTIPLICATION OF SIGNED 8 DIGITS x 8 DIGITS 49

3.4 DECIMAL DIVISION OF SIGNED 8 DIGITS/8 DIGITS .. 56

CHAPTER 4 SHIFT PROCESSING ... 65

4.1 SHIFTING N-BYTE DATA 1 BYTE TO THE RIGHT .. 65

4.2 SHIFTING N-DIGIT DATA 1 BYTE TO THE RIGHT

(DECIMAL 1/10 PROCESSING) ... 68

CHAPTER 5 BLOCK TRANSFER PROCESSING .. 71

5.1 BLOCK TRANSFER PROCESSING OF FIXED BYTE DATA............................... 71

5.2 BLOCK TRANSFER PROCESSING OF BYTE DATA.. 73

5.3 BLOCK COMPARISON (COINCIDENCE DETECTION) OF BYTE DATA 75

CHAPTER 6 DATA EXCHANGE PROCESSING .. 77

6.1 CONVERTING A HEXADECIMAL NUMBER (HEX) TO A

DECIMAL NUMBER (BCD) ... 77

6.2 CONVERTING A DECIMAL NUMBER (BCD) TO A

HEXADECIMAL NUMBER (HEX) .. 83

6.3 CONVERTING AN ASCII CODE TO A HEXADECIMAL CODE 89

6.4 CONVERTING A HEXADECIMAL CODE TO AN ASCII CODE 94

CHAPTER 7 DATA PROCESSING .. 99

7.1 SORTING 1-BYTE DATA .. 99

7.2 SEARCHING FOR DATA .. 104

- ii -

LIST OF FIGURES

Figure No. Title Page

2-1 Expressing Binary Numbers .. 5

2-2 Algorithm for Binary Multiplication .. 16

2-3 Algorithm for Binary Division ... 27

3-1 Expressing Decimal Numbers ... 35

CHAPTER 1 GENERAL

1.1 READING THIS DOCUMENT

This application note introduces examples of programs for basic binary and decimal arithmetic operations,

such as addition, subtraction, multiplication, and division, as well as data exchange and data transfer as

subroutine programs. The algorithms of these programs are described so that they can be used as user

programs.

The program examples given in this document are presented in the following format:

(1) Outline of processing

Outlines the processing performed by the program.

(2) RAM area

Describes the RAM area used by the program.

Note that if a work area is used as the RAM area, its contents will be undefined after the program has

been executed.

(3) Registers

Describes the registers used in the program.

To protect the contents of registers that have already been used by another program, save the contents

of those registers by switching the register bank before executing the described program.

(4) Input

Describes the arguments that must be input when executing the program.

(5) Output

Describes the arguments that are output after the program has been executed.

(6) Program description

Describes the algorithm on which the program is based.

Also refer to the flowchart and program listing.

(7) Flowchart

Illustrates the algorithm of the program by means of a flowchart.

(8) Program listing

Presents a listing of the program.

All program listing are described as source programs. The address, therefore, differs depending on the

link condition.

The programs shown in this application note are provided only as

examples and their actual operation is not guaranteed.

1

2

78K/IV SERIES APPLICATION NOTE

1.2 USING APPLICATION PROGRAMS

Basically, use the application programs presented in this document as specified in the description of each

application program. Some application programs call other application programs. In this case, link the

programs by means of a linker (LK78K/IV) and by referring to the description. A work area may also be

necessary. Reserve a RAM area according to the description and make a public declaration.

1.3 FEATURES OF 78K/IV SERIES DEVICES

As the functions of microcomputer-based products have improved and their cost fallen, the demand for

microcomputers that can satisfy these mutually contradicting requirements — more sophisticated functions

at lower cost — has steadily increased. In addition, with the explosive growth in portable systems such as

cellular telephones, the demand for microcomputers that can operate at lower voltages while dissipating less

power has also grown.

NEC’s 78K/IV Series of 16-bit single-chip microcomputers was developed in response to these market

demands.

The features of the 78K/IV series of microcomputers are as follows:

(1) Compatibility with existing models

The 78K/IV Series microcomputers maintain, at source level, upward compatibility with the 8-bit models

(78K/0, 78K/I, and 78K/II Series) and 16-bit models (78K/III Series) of the 78K Series, thus protecting your

investment in software.

(2) Wide linear memory space

Up to 1 MB of program memory and 16 MB of data memory are supported.

(3) Low voltage, low current dissipation

The operating voltage ranges from 2.7 to 5.5 V, so that 78K/IV Series devices can operate at very low

voltages. In addition, three standby modes, STOP, IDLE, and HALT, and a function for dividing the clock

to be supplied to the CPU are provided to enable power management according to the operating status.

(4) High-speed multiplication and division instructions

High-speed multiplication and division instructions are provided to support complicated control systems

and high-accuracy control algorithms.

8 bits x 8 bits = 16 bits (unsigned) –> 0.69 µs

16 bits x 16 bits = 32 bits (unsigned) –> 0.94 µs

16 bits x 16 bits = 32 bits (signed) –> 0.88 µs

16 bits/8 bits = 16-bit quotient, 8-bit remainder (unsigned) –> 1.06 µs

32 bits/16 bits = 32-bit quotient, 16-bit remainder (unsigned) –> 1.94 µs

(with internal 16-MHz clock)

3

CHAPTER 1 GENERAL

(5) Powerful interrupt response

For control applications, the way in which a microcomputer responds to an interrupt is particularly

important. The 78K/IV Series supports the following three interrupt functions:

• Vector interrupt

• Context switching

• Macro service

(6) Support of high-level language (C)

An enhanced instruction set for a C compiler, an efficient C compiler, and easy-to-use source debugging

environments are supported.

(7) Easy-to-use tools

Easy-to-use tools, such as an assembler package, C compiler, in-circuit emulator, and integrated

debugger are also supported.

1.4 PROGRAM

Some example programs presented in this application note require that the results of operations and

numeric data be written into RAM. When referring to the programs in this application note, therefore, reserve

the necessary amount of RAM by using the program below.

When using programs that perform binary division, decimal addition, decimal subtraction, and decimal

division, add the processing to be performed in the case of an error, as necessary.

PUBLIC BMLCND, BMLIER, BUFRAM, BRSLT ; binary multiply
PUBLIC DEND, DVISOR, DRMND ; binary division
PUBLIC DMLCND, DMLIER, DRSLT, CARRY ; decimal multiply
PUBLIC DIVSOR, DIVIND, RMIND ; decimal division
PUBLIC SFLAG

PUBLIC ERRFLAG ; error flag

BSEG

SFLAG DBIT ; sin flag
ERRFLAG DBIT ; error flag

WORKSEG DSEG saddr

;--

; binary multiply area

;--

BMLCND: DS 4

BMLIER: DS 4

BUFRAM: DS 15

BRSLT: DS 8

4

78K/IV SERIES APPLICATION NOTE

;--

; binary division area

;--

DEND: DS 4

DVISOR: DS 4

DRMND: DS 4

;--

; decimal multiply area

;--

DMLCND: DS 4

DMLIER: DS 4

DRSLT: DS 8

CARRY: DS 1

;--

; decimal division

;--

DIVSOR: DS 4

DIVIND: DS 4

RMIND: DS 4

CSEG

•

•

BT ERRFLAG, $ERROR ;if(error flag=1) then
• ; go to ERROR
•

ERROR: ; error routine
•

• ; Error processing. Prepare as
; necessary.

CHAPTER 2 BINARY OPERATIONS

In binary operations, the most significant bit is used as a sign bit, the remaining bits expressing a numeric

value. Negative numbers are expressed as a 2’s complement.

Figure 2-1. Expressing Binary Numbers

For binary operations, the data storage area used for the operation and the area storing the result of the

operation are located in RAM.

2.1 BINARY ADDITION OF SIGNED 32 BITS + 32 BITS

(1) Outline of Processing

This section presents an example program that adds a signed 32-bit augend to a 32-bit addend, then stores

the result into a 32-bit result area (shared with the augend area).

(2) RAM area

When the sign bit is (0): Positive (00000000H through 7FFFFFFFH)

When the sign bit is (1): Negative (FFFFFFFFH through 80000000H)

(3) Registers

AX, C, VP, TDE, and WHL registers

MSB LSB

Sign bit

1 byte

+32 bits 32 bits 32 bits

WHL
LSB

LSB
TDE

WHL+3
MSB

MSB

TDE+3

Addend area

Sign bit {0: Positive, 1: Negative}

Augend area,
result area
(shared)

5

6

78K/IV SERIES APPLICATION NOTE

(4) Input

Set the following addresses in the WHL and TDE registers.

WHL: Lowest address of the RAM area containing the 32-bit augend

TDE : Lowest address of the RAM area containing the 32-bit addend

(5) Output

The following contents are stored into the 4-byte RAM area indicated by the WHL register.

WHL to WHL+3: Stores the result of addition.

(6) Program description

(a) Sets the number of words to be manipulated in a counter (C register).

(b) Clears the carry flag (CY) to 0 in advance.

(c) Reads the 2 bytes from the addend area indicated by the addend address (TDE register) into the AX

register, and increments the added register (TDE register).

(d) Adds the 2 bytes in the augend area, indicated by the augend register (WHL register), into the AX

register.

(e) Stores the value in the AX register into the RAM area indicated by the augend address (WHL register),

and increments the augend address (WHL register).

(f) Decrements the counter (C register). When the value of the counter reaches 0, ends addition

processing.

(g) If a carry has occurred as a result of the addition, reads the data of the high-order 2 bytes in the result

area indicated by the next augend address (WHL register) into the AX register, and adds the 1 of the

carry.

(h) Stores the value in the AX register into the result area indicated by the augend address (WHL register),

then continues processing from step (c).

7

CHAPTER 2 BINARY OPERATIONS

(7) Flowchart

BFXADD

CY <– 0

BFXAD2:

AX <– AX – VP

C <– C – 1

C = 0
No

Yes

BFXAD3:

RET

Yes

No

Adds 1 of carry to
augend of next digit

C <– number of
additions
(number of words)

VP <– addend [TDE+]

AX <– augend [WHL]

Stores result of
addition of 1 word
 [WHL+] <– AX

CY = 1

8

78K/IV SERIES APPLICATION NOTE

(8) Program listing

• Description of the label used for executing of application routine

AUGNE: Lowest address of the RAM area containing the 32-bit augend that stores the 32-bit result

(shared)

ADDEN: Lowest address of the RAM area containing the 32-bit addend

• Example program listing for main routine

•

•

MOVG WHL, #AUGNE ;

MOVG TDE, #ADDEN ;

CALL !BFXADD ; data ”A+B” subrutin
•

•

Remark Set the WHL and TDE registers as shown above, then call the subroutine.

9

CHAPTER 2 BINARY OPERATIONS

• Program listing for this application routine

NAME BFXADR
;***
;* binary addition *
;* 32 bit <– 32 bit + 32 bit *
;* input condition *
;* WHL-register <– augnend bottom.address *
;* TDE-register <– addend bottom.address *
;* output condition *
;* result <– (HL+3, HL+2, HL+1, HL) *
;***

PUBLIC BFXADD

CSEG

BFXADD:

MOV C, #2 ;

BFXAD1:

CLR1 CY ;

BFXAD2:

MOVW AX, [TDE+] ; TDE-register <– addend address
MOVW VP, AX ;

MOVW AX, [WHL] ; WHL-register <– augnend address
ADDW AX, VP ; AX <– augnend + addend
MOVW [WHL+], AX ;

DBNZ C, $BFXAD3 ; add end ?
BR ADDEND ; [yes]

BFXAD3:

BNC $BFXAD2 ; [no] CY = 1 ?
MOVW AX, [WHL] ; [yes]
ADDW AX, #1 ; next data add 1
MOVW [WHL], AX ;

BR BFXAD2 ;

ADDEND:

RET ;

10

78K/IV SERIES APPLICATION NOTE

2.2 BINARY SUBTRACTION OF SIGNED 32 BITS – 32 BITS

(1) Outline of processing

This section presents an example program that subtracts a 32-bit subtrahend from a signed 32-bit minuend

and stores the result into a 32-bit result area (shared with the minuend area).

(2) RAM area

When the sign bit is (0): Positive (00000000H through 7FFFFFFFH)

When the sign bit is (1): Negative (FFFFFFFFH through 80000000H)

(3) Registers

AX, C, VP, TDE, and WHL registers

(4) Input

Set the following addresses in the WHL and TDE registers.

WHL: Lowest address of the RAM area containing the 32-bit minuend

TDE : Lowest address of the RAM area containing the 32-bit subtrahend

(5) Output

The following contents are stored into the 4-byte RAM area indicated by the WHL register.

WHL to WHL+3: Stores the result of the subtraction.

–32 bits 32 bits 32 bits

WHL
LSB

LSB
TDE

WHL+3
MSB

MSB
TDE+3

Subtrahend
area

Sign bit {0: Positive, 1: Negative}

Minuend area,
result area
(shared)

11

CHAPTER 2 BINARY OPERATIONS

(6) Program description

(a) Sets the number of words to be manipulated in a counter (C register).

(b) Sets the data for subtraction in the subtrahend and minuend areas.

(c) Clears the carry flag (CY) to 0 in advance.

(d) Reads the 2 bytes from the subtrahend area indicated by the subtrahend address (TDE register) into

the AX register, and increments the subtrahend address (TDE register).

(e) Subtracts the 2 bytes in the minuend area, indicated by the minuend address (WHL register), from

the AX register.

(f) Stores the value of the AX register into the result area indicated by the minuend address (WHL

register), and increments the minuend address (WHL register).

(g) Decrements the counter (C register). When the value of the counter reaches 0, ends subtraction

processing.

(h) If a borrow has occurred as a result of the subtraction, reads the data of the high-order 2 bytes indicated

by the next minuend address (WHL register) into the AX register, and subtracts the 1 of the borrow.

(i) Stores the value in the AX register into the result area indicated by the minuend address (WHL

register), then continues processing from step (d).

12

78K/IV SERIES APPLICATION NOTE

(7) Flowchart

BFXSUB

CY <– 0

BFXSUB2:

AX <– AX – VP

C <– C – 1

C = 0
No

Yes

BFXSUB3:

RET

Yes

No

CY = 1

Subtracts 1 of borrow
from next digit

C <– number of
subtractions
(number of words)

VP <– subtrahend
[TDE+]

AX <– minuend [WHL]

Stores result of
subtraction of 1 word

[WHL+] <– AX

13

CHAPTER 2 BINARY OPERATIONS

(8) Program listing

• Description of the label used for executing of application routine

MINU: Lowest address of the RAM area containing the 32-bit minuend that stores the 32-bit result

(shared)

SUBT: Lowest address of the RAM area containing the 32-bit subtrahend

• Example of program listing for main routine

•

•

MOVG WHL, #MINU ;

MOVG TDE, #SUBT ;

CALL !BFXSUB ; data ”A–B” subrutin
•

•

Remark Set the WHL and TDE registers as shown above, then call the subroutine.

14

78K/IV SERIES APPLICATION NOTE

• Program listing for this application routine

NAME BFXSBR
;***
;* binary subtraction *
;* 32 bit <– 32 bit – 32 bit *
;* input condition *
;* WHL-register <– minus value bottom.address *
;* TDE-register <– subtrahend bottom.address *
;* output condition *
;* result <– (WHL+3, WHL+2, WHL+1, WHL) *
;***

PUBLIC BFXSUB

;

BFXSUB:

MOV C, #2 ;

BFXSUB1:

CLR1 CY ;

BFXSUB2:

MOVW AX, [TDE+] ; TDE-register <– minus value address
MOVW VP, AX ;

MOVW AX, [WHL] ; WHL-register <– subtrahend address
SUBW AX, VP ; AX <– minus value addend – subtrahend
MOVW [WHL+], AX ;

DBNZ C, $BFXSUB3 ; sub end ?
BR SUBEND ; [yes]

BFXSUB3:

BNC $BFXSUB2 ; [no] CY = 1 ?
MOVW AX, [WHL] ; [yes]
SUBW AX, #1 ; next data sub 1
MOVW [WHL], AX ;

BR BFXSUB2 ;

SUBEND:

RET ;

15

CHAPTER 2 BINARY OPERATIONS

2.3 BINARY MULTIPLICATION OF SIGNED 32 BITS x 32 BITS

(1) Outline of processing

This section presents an example program that multiplies a signed 32-bit multiplicand by a 32-bit multiplier,

and stores the result into a 64-bit result area.

(2) RAM area

When the sign bit is (0): Positive (00000000H through 7FFFFFFFH)

When the sign bit is (1): Negative (FFFFFFFFH through 80000000H)

(3) Registers

A, X, B, C, VP, TDE, WHL, RP2, and R4 registers

(4) Input

Set the data necessary for the operation into the following 4-byte RAM areas.

BMLCND to BMLCND+3 : 32-bit multiplicand data

BMLIER to BMLIER+3 : 32-bit multiplier data

(5) Output

The following contents are stored into the following 8-byte RAM area.

BRSLT to BRSLT+7: Result of multiplication

x64 bits 32 bits 32 bits

MSB LSB

BMLCND
+3

BMLCND
+2

BMLCND
+1

BMLCND
+0

BMLIER
+3

MSB LSB

BMLIER
+2

BMLIER
+1

BMLIER
+0

BUFRAM
+4

BUFRAM
+F

MSB

BUFRAM
+3

BUFRAM
+2

BUFRAM
+1

BUFRAM
+0

LSB

LSB

BRSLT
+4

BRSLT
+3

BRSLT
+2

BRSLT
+1

BRSLT
+0

BRSLT
+7

MSB

Result area

Sign bit {0: Positive, 1: Negative}

Multiplicand
area

Multiplier
area

Work area

Sign bit {0: Positive, 1: Negative}

16

78K/IV SERIES APPLICATION NOTE

(6) Program description

Figure 2-2 illustrates the algorithm for binary multiplication using the 16-bit multiplication instruction.

Figure 2-2. Algorithm for Binary Multiplication

Remark CY: Carry flag

Processing 4 adds the carry flag (CY) that has been generated as a result of the operation on

the lower digit.

(iv) (iii)

(ii) (i)

+3 +2 +1 +0

+3 +2 +1 +0

IV III II I

g f e d c b a I

CY + g = IV CY + d + e + f = III CY + a + b + c = II

BRSLT
Result area
(BRSLT)

CY retained CY retained

Work area
(BUFRAM)

Processing 4

Work area
(BUFRAM)

Values are exchanged

Processing 3

Result of (ii) x (iv) –>

Result of (ii) x (iii) –>

Result of (i) x (iv) –>

Result of (i) x (iii) –>

Processing 2

Multiplier area
(BMLIER)

Multiplicand area
(BMLCMD)

Processing 1

<4> <3> <2> <1>

<8> <7> <6> <5>

<9><12> <11> <10>

<13><16> <15> <14>

<1><4> <3> <2><5><8> <7> <6><9><12> <11> <10><13><16> <15> <14>

<1><4> <3> <2><5><10> <9> <6><7><12> <11> <8><13><16> <15> <14>

+F +E +D +C +B +A +9 +8 +7 +6 +5 +4 +3 +2 +1 +0

+F +E +D +C +B +A +9 +8 +7 +6 +5 +4 +3 +2 +1 +0

+7 +6 +5 +4 +3 +2 +1 +0

17

CHAPTER 2 BINARY OPERATIONS

The processing performed by this program is as follows:

(a) Takes the absolute values of the multiplier and multiplicand. If the signs of the

multiplier and multiplicand differ, sets the sign identification flag (SFLAG) to 1. If the

signs are the same, clears the flag to 0.

(b) Sets the multiplication end flag (LFLAG) to 1.

(LFLAG = 1: Multiplication does not end, LFLAG = 0: Multiplication ends)

(c) Sets 0 to indicate the lowest address by using the B register as the address pointer

to the multiplicand area.

Processing 1

(d) Sets the lowest address of the work area in the TDE register and the lowest address

of the multiplier area in the WHL register.

(e) Reads the 2-byte multiplier indicated by the WHL register into the VP register, and

saves its contents in preparation for the operation performed on the next digit.

(f) Reads the 2-byte multiplicand, indicated by the address pointer (B register) in the

multiplicand area, into the AX register, multiplies it by the multiplier stored in the VP

register, then stores the result into the work area indicated by the TDE register, 4 bytes

at a time.

(g) Adds 2 to the B register, and increments the address pointer of the multiplicand area

by 2 bytes.

(h) Compares the value of the address pointer (B register) in the multiplicand area with

the number of digits (4) in the multiplicand area to determine whether the two values

are the same.Processing 2
If the values are found to be different, restores the value of the multiplier saved to the

VP register in step (e) to multiply the multiplicand of the next digit, and returns to step

(g). Steps (g) through (i) are repeated until the values are the same.

(i) Sets 0, to indicate the lowest address, into the address pointer (B register) of the

multiplicand area.

(j) Judges whether all multiplications have been completed, by referencing the multipli-

cation end flag (LFLAG). If multiplication has not yet been completed, clears the

multiplication end flag (LFLAG) to 0, returns to step (e), then repeats the processing

up to step (j).

Processing 3 (k) Exchanges the contents of work areas BUFRAM+6 and BUFRAM+7, and BUFRAM+8

and BUFRAM+9, in which the multiplication result is stored.

(l) Stores the values of BUFRAM+0 and BUFRAM+1 into the first and second bytes of

the result area (BRSLT).

(m) Adds the values of BUFRAM+2 through BUFRAM+7 with the carry flag (CY), 2 bytes

at a time, then stores the result into the third and fourth bytes of the result area

(BRSLT).

(n) Adds the values of BUFRAM+8 through BUFRAM+0DH with the carry flags (CY), 2

bytes at a time, then stores the result into the fifth and sixth bytes of the result area

(BRSLT).

Processing 4

(o) Adds the contents of BUFRAM+0EH and BUFRAM+0FH with the carry flags (CY),

then stores the result into the seventh and eighth bytes of the result area (BRSLT).

(p) If the sign identification flag (SFLAG) is 1, takes the 2’s complement of the multipli-

cation result as the result.

18

78K/IV SERIES APPLICATION NOTE

Remark Steps 1 through 4 correspond to the numbers shown in Figure 2-2 .

(7) Flowchart

BFMUL

No

Yes

BFMUL1:

No

Yes

Yes

No

Yes

No

BFMUL2:

BFMUL3:

BFMUL4:

Clears multiplication
end flag (LFLAG) to 0

Clears sign identification
flag (SFLAG) to 0

Multiplicand < 0

Multiplicand <–
|multiplicand|

Inverts sign identifi-
cation flag (SFLAG)
SFLAG <– SFLAG

Multiplier < 0

Multiplier <– |multiplier|

Inverts sign identifi-
cation flag (SFLAG)
SFLAG <– SFLAG

LFLAG <– 1

Clears multiplication
counter (B register) to 0

Sets address of work area
for storing multiplication
result

Sets address of
multiplier area

WHL <– [BMLIER]

Sets multiplier
in VP register

Saves VP register

Sets multiplicand
in AX register

AXVP <– AX*VP
AXVP <– multiplicand

x multiplier

Stores multiplication
result into work area

Multiplication
ends?

LFLAG = 0

Restores VP register

COMPL

COMPL

1

1

B <– B + 2

B = 4

B <– 0

2

Initializes multiplication
end flag (LFLAG)

B <– 0

TDE <– [BUFRAM]

19

CHAPTER 2 BINARY OPERATIONS

BFMUL6:

BFMUL7:

BFMUL8:

No

Yes

No

Yes

No

Yes

COMPL

COMP1

COMP2:

No

Yes

RET

Exchanges BUFRAM+6 and
BUFRAM+7, and
BUFRAM+8 and BUFRAM+9

Sets address of multiplication
result work area BUFRAM+2
in WHL register

Sets address of multiplication
result RAM area BRSLT+2 in
TDE register

Initializes multiplication end
flag (LFLAG)
 LFLAG <– 1

Transfers lowest 1 word of
multiplication result work
area to lowest word of multi-
plication result RAM area

Sets loop counter
B <– 3

Adds the contents indicated
by [WHL], 1 word at a time

Stores addition result into
result area (address
indicated by [TDE])

Addition ends?
LFLAG = 0

Adds lowest word of multipli-
cation result area to CY

Stores addition result to
result area (address
indicated by [TDE])

Sign
identification flag

(SFLAG) = 1

C <– number of bytes,
converted into absolute value

Sets address of multiplication
result area in [WHL]

2's complement of result

Sets number of bytes from
which 2's complement
(absolute value) is taken
 C <– 4

CY <– clear

Subtracts contents of
address indicated by
[WHL] from A register

 [WHL+] <–
subtraction result

C = 0

C <– C – 1

A <– 0

3

RET

2

3

B <– B – 1

B = 0

LFLAG <– 0

COMP1

20

78K/IV SERIES APPLICATION NOTE

(8) Program listing

• Description of label used for executing the application routine

BMLCND : Lowest address of the RAM area containing the 32-bit multiplicand

BMLIER : Lowest address of the RAM area containing the 32-bit multiplier

BUFRAM : Lowest address of the work area that temporarily contains the 15-byte multiplication result

BRSLT : Lowest address of the RAM area that contains the final multiplication result

SFLAG : Sign identification flag

SFLAG = 0 ... Same signs

SFLAG = 1 ... Different signs

LFLAG : Multiplication end flag

LFLAG = 0 ... Multiplication has ended

LFLAG = 1 ... Multiplication has not ended

• Example program listing for main routine

•

•

MOVW BMLCND , #02H

MOVW BMLCND+2 , #00H

MOVW BMLIER , #08H

MOVW BMLIER+2 , #15H

;

CALL !BFMUL

•

•

Remark Set the multiplicand and multiplier as shown above, then call the subroutine.

21

CHAPTER 2 BINARY OPERATIONS

• Program listing for this application routine

NAME BFMULR

;***
;* binary multiplication *
;* input condition *
;* multiplicand <– (BMLCND+3, ..., BMLCND) *
;* multiplier <– (BMLIER+3, ..., BMLIER) *
;* output condition *
;* result <– (BRSLT+7, BRSLT+6, ..., BRSLT) *
;***

PUBLIC BFMUL ;

EXTRN COMPL, COMP1 ;

EXTRN BMLCND, BMLIER, BRSLT

EXTRN BUFRAM

EXTBIT SFLAG, LFLAG

;

BYTNUM EQU 4 ; value length
;

CSEG

BFMUL:

;

; *** compliment convert ***

;

CLR1 SFLAG ; sign-flag <– 0
BF BMLCND+3.7, $BFMUL1 ; if data<0 go to BFMUL1
MOVG WHL, #BMLCND ;WHL-reg. <– BMLCND
CALL !COMPL ; complement subroutine
NOT1 SFLAG ;not sign-flag

BFMUL1:

BF BMLIER+3.7, $BFMUL2 ; if data<0 go to BFMUL2
MOVG WHL, #BMLIER ; WHL-reg. <– BMLIER
CALL !COMPL ; complement subroutine
NOT1 SFLAG ;not sign-flag

;

22

78K/IV SERIES APPLICATION NOTE

; *** word multiplication process ***

;

BFMUL2:

SET1 LFLAG ;

MOV B, #0 ; MULT loop number clear
MOVG TDE, #BUFRAM ;TDE-reg. <– BUFRAM
MOVG WHL, #BMLIER ; WHL-reg. <– BMLIER

BFMUL3:

MOVW AX, [WHL+] ;

MOVW VP, AX ; VP <– BMLIER
PUSH VP ;

BFMUL4:

MOVW AX, BMLCND[B] ; AX <– BMLCND[B]
MULUW VP ;AXVP <– AX*VP

;

XCHW AX, VP ;

MOVW [TDE+], AX ;

XCHW AX, VP ;

MOVW [TDE+], AX ; WORK area <– AXVP
ADD B, #2 ;

CMP B, #4 ;

BZ $BFMUL5 ;

;

POP VP ;

BR BFMUL4 ;

;

BFMUL5:

MOV B, #0 ;

BTCLR LFLAG, $BFMUL3

;

; *** multiplicated data add process ***

;

XCHW BUFRAM+6, BUFRAM+8 ;BUFRAM+6, BUFRAM+7
; <–> BUFRAM+8, BUFRAM+9

MOVG WHL, #BUFRAM+2 ;

MOVG TDE, #BMSLT+2 ;

SET1 LFLAG ;

MOVW RP2, #00H ;

MOVW BRSLT, BUFRAM ;answer of lower set
BFMUL6:

MOVW VP, RP2 ;

MOVW RP2, #0 ;

MOV B, #3 ; add number set

23

CHAPTER 2 BINARY OPERATIONS

BFMUL7:

MOVW AX, [WHL+] ;

ADDW VP, AX ; add
ADDC R4, #0 ;

DBNZ B, $BFMUL7 ;

XCHW AX, VP ; BMSLT+ <– data set
MOVW [TDE+], AX ;

BTCLR LFLAG, $BFMUL6 ; all add end?
MOVW AX, [WHL+] ; [no] add again
ADDW AX, RP2 ;

MOVW [TDE], AX ;

BF SFLAG, $BFMUL8 ; if sflag=1 complement convert
MOV C, #8

MOVG WHL, #BRSLT

CALL !COMP1

BFMUL8:

RET

NAME CMPLE

;***
;* complement convert subroutine *
;* input condition *
;* WHL-register <– complement top.address *
;* output condition *
;* (WHL+3, WHL+2, ..., WHL) <– convert data *
;* *
;***

PUBLIC COMPL, COMP1

;

BYTNUM EQU 4 ; value length
CSEG

COMPL:

MOV C, #BYTNUM

COMP1:

CLR1 CY ;

COMP2:

MOV A, #0H

SUBC A, [WHL]

MOV [WHL+], A

DBNZ C, $COMP2

RET

24

78K/IV SERIES APPLICATION NOTE

2.4 BINARY DIVISION OF SIGNED 32 BITS/32 BITS

(1) Outline of processing

This section presents an example program that divides a signed 32-bit dividend by a 32-bit divisor and

stores the result into a 32-bit result area.

(2) RAM area

When the sign bit is (0): Positive (00000000H through 7FFFFFFFH)

When the sign bit is (1): Negative (FFFFFFFFH through 80000000H)

Caution The dividend and quotient (DEND+3, ..., DEND), and remainder (DRMND+3, ..., DRMND)

areas must all be 8-byte contiguous RAM areas.

(3) Registers

A, X, B, C, TDE, and WHL registers

(4) Input

Set the data necessary for the operation into the following 4-byte RAM areas.

DEND to DEND+3 : 32-bit dividend data

DVISOR to DVISOR+3 : 32-bit divisor data

÷

Remainder

Quotient 32 bits

32 bits

32 bits 32 bits

MSB

DRMND
+3

DRMND
+1

DRMND
+0

MSB

DEND
+3

DEND
+1

DEND
+0

LSB

LSB

DVISOR
+0

DVISOR
+1

DVISOR
+3

MSB

LSB

Divisor area

Sign bit {0: Positive, 1: Negative}
Remainder area Dividend area, quotient area (shared)

Sign bit {0: Positive, 1: Negative}

Sign bit {0: Positive, 1: Negative}

25

CHAPTER 2 BINARY OPERATIONS

(5) Output

The status of the division processing is indicated by setting the following flag.

ERRFLAG: Error flag

ERRFLAG = 0 ... No error has occurred (division has been completed normally)

ERRFLAG = 1 ... An error has occurred (division cannot be executed because the

divisor is 0)

The 4-byte RAM areas are used to store the results shown.

DEND to DEND+3 : Stores the quotient resulting from the divisionNote

DRMND to DRMND+3: Stores the remainder resulting from the divisionNote

Note The values before the operation are retained as these values if the error flag (ERRFLAG) = 1.

Remark The main routine checks the error flag (ERRFLAG). Add error processing as necessary.

(6) Program description

This program uses a subtract and return method as the algorithm for binary division. This algorithm is

illustrated below.

• Algorithm of division by subtract and return method

<1> Q <– 0

<2> Y <– Y x 2m-n

<3> { X <– X – Y

<4> if X ≥ 0 then Q <– Q + 1

else X <– X + Y

<5> Q <– Q x 2

<6> Y <– Y/2 }

<7> { } in <3> through <6> is repeated n times.

<8> As a result, the quotient is stored into Q and the remainder is stored into X.

Remark The meanings of the above symbols are as follows.

Q: Quotient area

X : Dividend area

Y : Divisor area

m: Number of digits in dividend

n : Number of digits in divisor

26

78K/IV SERIES APPLICATION NOTE

• Example of binary division (4 bits/4 bits) using the subtract and return method

Example 14/3 = quotient: 4, remainder: 2 (The following expression is in binary.)

1 1 1 01 1
– 1 1

1 0 0

0 0 1 0
1 1–

1 0 0
1 1

–
+

0 1 0
1 1–

1
1 1

–
+

1 0

Because the result
is negative, the number
subtracted is added to
restore the original number.

Remainder = 2

Quotient = 4

27

CHAPTER 2 BINARY OPERATIONS

• Algorithm for binary division (32 bits/32 bits) performed by this program

Figure 2-3. Algorithm for Binary Division

+3 +2 +1 +0 +3 +2 +1 +0

+3 +2 +1

+3

+0

Processing 1 –>

Repeats above processing by 32 bits

Remainder area
(DRMND) (II)

Quotient area
(DEND) (I)

If result of "remainder area (II') - divisor area (III)" is

Divisor area
(DVISOR) (III)

1-bit shift

Dividend area, quotient area (DEND) (I) Remainder area (DRMND) (II)

• Clears remainder area to 0.
• Shifts contents of remainder and dividend areas 1 bit to left, as shown below.

Processing 3

Processing 2

(II') (I')

(III)

I + 1

II' + III

• Positive: increments quotient area (I).

• Negative: performs "remainder area (II') + divisor area (III)" to restore original value.

28

78K/IV SERIES APPLICATION NOTE

The processing performed by this programs is explained below.

Processing 1 –> (a) Determines whether the value of the divisor area is 0. If 0, sets the error flag

(ERRFLAG) to 1, then ends the operation, with only information indicating the

occurrence of an error remaining.

(ERRFLAG = 0 ... No error has occurred, ERRFLAG = 1 ... An error has occurred)

(b) Clears the remainder area to 0.

(c) Takes the absolute values of the dividend and divisor areas. If either of the values

in the dividend and divisor areas is negative, sets the quotient sign flag (QUOFLAG)

to 1.

(QUOFLAG = 0 ... Sign of quotient is positive, QUOFLAG = 1 ... Sign of quotient is

negative)

Sets the remainder sign flag (REMFLAG) to 1 if the value of the dividend area is

negative.

(REMFLAG = 0 ... Sign of remainder is positive, REMFLAG = 1 ... Sign of remainder

is negative)

(d) Uses the B register as a bit counter that counts the number of bits in the dividend area,

then sets the number of bits (32) in the dividend area in this counter.

Processing 2 –> (e) Shifts the remainder area and dividend area (8-byte contiguous area) 1 bit to the left.

Processing 3 –> (f) Executes “remainder area <– remainder area – divisor area”.

If the result is negative, jumps to (h).

(g) Increments the quotient area (DEND). Jumps to (i).

(h) Because too great a value has been subtracted, executes “remainder area <–

remainder area + divisor area” to restore the original value of the remainder area.

Processing 4

(i) Decrements the bit counter (B register) of the dividend area, and repeats steps (e)

through (h) until the counter reaches 0.

(j) Checks the quotient sign flag (QUOFLAG), and takes the 2’s complement of the

quotient if the flag is set to 1.

Checks the remainder sign flag (REMFLAG), and takes the 2’s complement of the

remainder if the flag is set to 1.

Remarks 1. For details of the COMPL subroutine, see Section 2.3 .

2. Processing 1 through 4 corresponds to the numbers shown in Figure 2-3 .

29

CHAPTER 2 BINARY OPERATIONS

(7) Flowchart

BFDIV

Yes

No

RETCOML

1

1
BFDIV5:

No

Yes

BFDIV8:

No

Yes

No

Yes

COMPL

BFDIV9:

No

Yes

COMPL

BFDIV11:

RET

Clears error flag
(ERRFLAG) to 0

Divisor = 0

Clears remainder area
(DRMND to DRMND+3)
to 0

Dividend <– |dividend|
Divisor <– |divisor|

Sets quotient sign flag
(SF_QUO) to 1 if signs
of dividend and divisor
are different; if signs are
the same, clears flag to 0

Sets remainder sign flag
(SF_REM) to 1 if
dividend is negative;
otherwise, clears flag to 0

B <– 32
Number of bits of dividend

Sets error flag
(ERRFLAG) to 1

Shifts 8 bytes of
remainder and quotient
1 bit to left (high-end)

Remainder <– remainder
– divisor

Remainder < 0
CY = 1

Remainder <– remainder
+ divisor

Quotient
sign flag (SF_QUO)

= 1

2's complement of
quotient

2's complement of
remainder

Remainder
sign flag (SF_REM)

= 1

B = 0

B <– B – 1

30

78K/IV SERIES APPLICATION NOTE

(8) Program listing

• Description of label used for execution of application routine

DEND : Lowest address of the RAM area containing the 32-bit dividend and 32-bit quotient (shared)

DRMND : Lowest address of the RAM area containing the 32-bit remainder that results from division

DIVSOR : Lowest address of the RAM area containing the 32-bit divisor

BYTNUM : Number of bytes in the remainder area (used to clear the remainder area to 0)

QUOFLAG: Quotient sign flag

QUOFLAG = 0 ... Sign of quotient is positive

QUOFLAG = 1 ... Sign of quotient is negative

REMFLAG : Remainder flag

REMFLAG = 0 ... Sign of remainder is positive

REMFLAG = 1 ... Sign of remainder is negative

ERRFLAG : Error flag

ERRFLAG = 0 ... An error has not occurred

ERRFLAG = 1 ... An error has occurred

• Example of program listing for main routine

•

•

MOVW DEND, #00 ; data ”A”
MOVW DEND+2, #32 ;

MOVW DVISOR, #00 ; data ”B”
MOVW DVISOR+2, #08 ;

CALL !BFDIV ; data ”A/B” subroutine

BT ERRFLAG, $ERROR ;

BR $$;

ERROR:

CLR1 ERRFLAG ; clear error flag
 •

•

Remark Set the dividend and divisor as shown above, then call the subroutine.

31

CHAPTER 2 BINARY OPERATIONS

• Program listing for this application routine

NAME BFDIVR
;***
;* binary division *
;* 32 bit <– 32 bit / 32 bit *
;* input condition *
;* dividend <– (DEND+3, ..., DEND) *
;* divisor <– (DVISOR+3, ..., DVISOR) *
;* output condition *
;* quotient <– (DEND+3, ..., DEND) *
;* remainder <– (DRMND, ..., DRMND) *
;* z flag <– 0:output ok 1: NG *
;***

PUBLIC BFDIV

EXTRN COMPL

EXTRN DEND, DVISOR, DRMND

EXTBIT ERRFLAG

EXTBIT REMFLAG, QUOFLAG

;

BYTNUM EQU 4

;

CSEG

BFDIV:

CLR1 ERRFLAG ; clear error flag
;

; **** check / divisor = 0 ? ****

;

MOVG WHL, #DVISOR ; WHL <– DVISOR
MOVW AX, [WHL+] ;

CMPW AX, #0 ;

BNZ $BFDIV2 ; [WHL] = 0 ?
MOVW AX, [WHL+] ;

CMPW AX, #0 ;

BNZ $BFDIV2 ; [WHL] = 0 ?
;

; **** divisor = 0 ****

;

SET1 ERRFLAG ; OVERFLOW
RET

;

; **** quotient 0-clear ****

;

BFDIV2:

MOVG TDE, #DRMND ; TDE-register <– DRMND
MOV C, #BYTNUM ;

MOV A, #0 ;

MOVM [TDE+], A ;

32

78K/IV SERIES APPLICATION NOTE

;

; **** complement convert ****

;

CLR1 REMFLAG ; clear remainder sign-flag
CLR1 QUOFLAG ;clear quotient sign-flag
BF DEND+3.7, $BFDIV3

MOVG WHL, #DEND ; WHL-register <– DEND
CALL !COMPL ; complement subroutine
SET1 REMFLAG ; set remainder sign-flag
NOT1 QUOFLAG ;not quotient sign-flag

BFDIV3:

BF DVISOR+3.7, $BFDIV4

MOVG WHL, #DVISOR ; WHL-register <– DVISOR
CALL !COMPL ; complement subroutine
NOT1 QUOFLAG ; not quotient sign-flag

;

; **** byte counter set ****

;

BFDIV4:

MOV B, #32 ; B-register <– 32
;

; **** dividend, remainder 1-byte left shift ****

;

BFDIV5:

CLR1 CY ;

MOVG WHL, #DEND ; WHL <– DEND
MOV C, #8 ; loop counter

BCDLS1:

MOV A, [WHL] ;

ROLC A, 1 ;

MOV [WHL+], A ;

DBNZ C, $BCDLS1 ;

;

; **** subtract divisor from dividend ****

;

BFDIV6:

MOVG TDE, #DVISOR ; TDE <– DVISOR

MOVW AX, [TDE+] ;

SUBW DRMND, AX ;

MOV A, [TDE+] ;

SUBC DRMND+2, A ;

MOV A, [TDE+] ;

SUBC DRMND+3, A ;

BC $BFDIV7 ;

SET1 DEND.0 ;

BR BFDIV8 ;

33

CHAPTER 2 BINARY OPERATIONS

;

; **** if borrow divisor + dividend ****

;

BFDIV7:

MOVG TDE, #DVISOR ; TDE <– DVISOR

MOVW AX, [TDE+] ;

ADDW DRMND, AX ;

MOV A, [TDE+] ;

ADDC DRMND+2, A ;

MOV A, [TDE+] ;

ADDC DRMND+3, A ;

BFDIV8:

DBNZ B, $BFDIV5 ;

;

; **** check / division end ? ****

;

BF REMFLAG, &BFDIV9

MOVG WHL, #DRMND

CALL !COMPL

BFDIV9:

BF QUOFLAG, $BFDIV10

MOVG WHL, #DEND

CALL !COMPL

BFDIV10:

CLR1 PSWL.6 ; clear z flag
BFDIV11:

RET

;

34

78K/IV SERIES APPLICATION NOTE

[MEMO]

LSBMSB

1 digit of decimal number

1 byte

Sign bit

CHAPTER 3 DECIMAL OPERATIONS

In decimal operations, the most significant bit is used as a sign bit, the remaining bits expressing a numeric

value, as shown in Figure 3-1. Decimal numbers are expressed as BCD codes.

Figure 3-1. Expressing Decimal Numbers

For decimal operations, the data storage area used for the operation and the area storing the result of the

operation are located in RAM.

35

36

78K/IV SERIES APPLICATION NOTE

3.1 DECIMAL ADDITION OF SIGNED 8 DIGITS + 8 DIGITS

(1) Outline of Processing

This section presents an example program that adds a signed 8-digit augend to an 8-digit addend, then

stores the result into an 8-digit result area (shared with the augend area).

(2) RAM area

When the sign bit is (0): Positive (0 through 79999999)

When the sign bit is (1): Negative (–1 through –79999999)

(3) Registers

A, C, B, TDE, and WHL registers

(4) Input

Set the following addresses in the WHL and TDE registers.

WHL: Lowest address of the RAM area containing the 8-digit (4-byte) augend

TDE : Lowest address of the RAM area containing the 8-digit (4-byte) addend

(5) Output

The status of the division processing is indicated by the following flag.

ERRFLAG: Error flag

ERRFLAG = 0 ... An error has not occurred (addition was completed normally)

ERRFLAG = 1 ... An error has occurred (addition cannot be executed because an

overflow or underflow occurred)

+8 digits 8 digits 8 digits

WHL

LSB

LSB

TDE

WHL+3

TDE+3

MSB

MSB

Sign bit {0: Positive, 1: Negative}

 Addend area

 1 digit of decimal number
(4 bits)

Augend area,
result area
(shared)

1 byte

37

CHAPTER 3 DECIMAL OPERATIONS

The following contents are stored into the 4-byte RAM area indicated by the WHL register.

WHL to WHL+3: Stores the result of the additionNote

Note When the error flag (ERRFLAG) = 1, the 4-byte value in the WHL register will be undefined.

Remarks 1. The operation range is –79999999 to 79999999.

2. The error flag (ERRFLAG) is identified by the main routine. Add error processing as

necessary.

(6) Program description

This program performs addition if the signs of the addend and augend are the same; if not, it performs

subtraction.

(a) Sets the number of bytes for decimal addition in the C counter (C register).

(b) If the signs of the addend and augend are different, jumps to step (o).

(c) Clears the carry flag (CY) and sign identification flag (SFLAG) to 0.

(d) Reads 1 byte of the augend area indicated by the augend address (WHL register) into the A register.

(e) Adds the 1 byte of the addend area, indicated by the addend address (TDE register), to the A register

with the carry flag (CY), and increments the addend address (TDE register).

Converts the result of the operation to a decimal number, stores it into the result area indicated by

the augend address (WHL register), then increments the augend address (WHL register).

(f) Decrements the counter (B register), then repeats steps (d) through (e) until the value of the counter

reaches 0.

(g) Reads 1 byte from the augend area indicated by the augend address (WHL register) into the A register.

(h) Adds 1 byte of the addend area, indicated by the addend address (TDE register) into the A register

with the carry flag (CY).

(i) Jumps to step (k) if the carry flag (CY) is “0”.

(j) Sets the sign identification flag (SFLAG) to 1, then clears the carry flag (CY) to 0.

(k) Converts the value of the A register to a decimal number.

(l) If the carry flag (CY) is “1”, or if the seventh bit of the A register is “1”, an overflow occurs. In this

case, sets the error flag (ERRFLAG) to 1 and terminates the operation.

(m) Sets the seventh bit of the A register into 1 if the sign identification flag (SFLAG) is “1”.

(n) Stores the contents of the A register into the result area indicated by the augend address (WHL

register), then terminates the operation.

(o) Makes the subtrahend positive, then clears the sign identification flag (SFLAG) to 0.

(p) If the minuend is negative, makes the minuend positive, then sets the sign identification flag to 1.

(q) Clears the carry flag (CY) to 0.

(r) Reads 1 byte in the minuend area, indicated by the minuend address (WHL register), into the A

register.

(s) Subtracts 1 byte in the subtrahend area, indicated by the subtrahend address (TDE register), from

the A register with the carry flag (CY), and increments the subtrahend address (TDE register).

Converts the result of the operation to a decimal number, stores it into the result area indicated by

the minuend address (WHL register), then increments the minuend address (WHL register).

38

78K/IV SERIES APPLICATION NOTE

(t) Decrements the counter (C register), then repeats steps (r) and (s) until the value of the counter

reaches 0.

(u) Jumps to step (w) if the carry flag (CY) is 0.

(v) Takes the 10’s complement of the result and inverts the sign identification flag (SFLAG).

(w) Terminates the operation if the result is 0.

(x) Jumps to step (y) if the sign identification flag (SFLAG) is 1; if the flag is 0, terminates the operation.

(y) Sets the sign bit of the result to 1, then terminates the operation.

Remark For the decimal subtraction routine (steps (o) through (y)), the augend area is replaced by the

minuend area, while the addend area is replaced by the subtrahend area.

(7) Flowchart

BCDADD

BCDAD2

No

Yes

DADDS DSUBS

RET

C <– Number of bytes
for decimal addition

Decimal subtraction
processing

Decimal addition
processing

Signs of
augend and addend

same?

 B <– C – 1
Number of bytes for
decimal addition with-
out sign

39

CHAPTER 3 DECIMAL OPERATIONS

DADDS

DADDS1:

No

Yes

No

Yes

DADDS3:

Yes

No

Yes

No

Yes

No

DADDS6:

RET

DSUBS

No

Yes

DSUBS1:

DSUBS2:

No

Yes

No

Yes

DSUBS5:
Yes

No

No

Yes

DSUBS6:

RET

CY = 1

A.7 = 1

CY = 1

CY = 1

C = 0

B = 0

Sets error flag
(ERRFLAG) to 1

Appends negative sign to
result

Sign
identification flag

(SFLAG) = 1

Result = 0

Converts result to decimal
number and inverts sign
identification flag (SFLAG)

Converts result to decimal num-
ber and stores to result area

C <– C – 1

Subtracts subtrahend from
minuend with CY
A <– [WHL] – [TDE] – CY
Increments subtrahend ad-
dress and minuend address
TDE <– TDE + 1, WHL <– +1

Makes subtrahend positive.
Sets sign identification flag
(SFLAG) to 1

Minuend < 0

Makes subtrahend positive.
Clears sign identification
flag (SFLAG) to 0

Clears sign identification
flag (SFLAG) to 0

Adds addend to augend
with CY
 A <– [WHL] + [TDE] + CY

Converts result to decimal
number and stores into
memory

Increments subtrahend
address and minuend
address
 TDE <– TDE + 1,
 WHL <– WHL + 1

A <– [WHL] + [TDE] + CY
Adds addend and augend
with CY

Sets sign identification
flag (SFLAG) to 1

Converts result to
decimal number

Sign
identification flag

(SFLAG) = 1

Stores A into result area

A. 7 <– 1

B <– B – 1

B <– C
CY <– 0

CY <– 0

CY <– 0

40

78K/IV SERIES APPLICATION NOTE

(8) Program listing

• Description of label used for executing the application routine

BCDAUG : Lowest address of the RAM area containing the 8-digit (4-byte) augend and 8-digit result

(shared)

BCDADE : Lowest address of the RAM area containing the 8-digit (4-byte) addend

SFLAG : Sign identification flag

SFLAG = 0 ... Same signs

SFLAG = 1 ... Different signs

ERRFLAG: Error flag

ERRFLAG = 0 ... No error has occurred

ERRFLAG = 1 ... An error occurred

• Example of program listing for main routine

•

•

MOVG WHL, #BCDAUG ;

MOVG TDE, #BCDADE ;

CALL !BCDADD

;

BT ERRFLAG, $ERROR ;

BR $$;

ERROR:

CLR1 ERRFLAG ; clear error flag
•

•

Remark Set the WHL and TDE registers as shown above, then call the subroutine. Prepare and add

error processing as necessary.

41

CHAPTER 3 DECIMAL OPERATIONS

• Program listing for this application routine

NAME BCDADR
;***
;* decimal addition *
;* 8 digit <– 8 digit + 8 digit *
;* input condition *
;* WHL-register <– augend area top.address *
;* TDE-register <– addend area top.address *
;* output condition *
;* result <– (WHL, WHL+1, WHL+2, WHL+3) *
;***

PUBLIC BCDADD, BCDAD1, BCDAD2

PUBLIC DADDS

PUBLIC DSUBS

EXTBIT SFLAG ; work flag for sign flag
EXTBIT ERRFLAG ; error sign flag

BYTNUM EQU 4

CSEG

BCDADD:

MOV C, #BYTNUM ;C-register <– 4
BCDAD1:

MOV B, C ; B-register <– C-register – 1
DEC B

BCDAD2:

MOV A, [WHL+BYTNUM-1]

XOR A, [TDE+BYTNUM-1]

CLR1 ERRFLAG ; clear error flag
BT A.7, $BCDAD3

CALL !DADDS

BR EBCDAD

BCDAD3:

CALL!DSUBS

EBCDAD:

RET

42

78K/IV SERIES APPLICATION NOTE

;==

; ***** decimal addition subroutine *****

;==

DADDS:

CLR1 CY

CLR1 SFLAG ; clear sign-flag
DADDS1:

MOV A, [WHL]

ADDC A, [TDE+]

ADJBA ; decimal adjust
MOV [WHL+], A

DBNZ B, $DADDS1

MOV A, [WHL]

ADDC A, [TDE]

DADDS2:

BNC $DADDS3

SET1 SFLAG ; set sign-flag
CLR1 CY

DADDS3:

ADJBA ; decimal adjust
BNC $DADDS4

BR DADDS7

DADDS4:

BF A.7, $DADDS5

BR DADDS7

DADDS5:

BF SFLAG, $DADDS6

SET1 A.7

DADDS6:

MOV [WHL], A

BR EDADDS

DADDS7:

SET1 ERRFLAG ;set error flag
EDADDS:

RET

43

CHAPTER 3 DECIMAL OPERATIONS

;==

; ***** decimal subtraction subroutine *****

;==

DSUBS:

PUSH WHL ;save WHL-register
CLR1 SFLAG ; clear sign-flag
MOV A, [TDE+BYTNUM-1]

CLR1 A.7

MOV [TDE+BYTNUM-1], A

MOV A, [WHL+BYTNUM-1]

BF A.7, $DSUBS1

CLR1 A.7

MOV [WHL+BYTNUM-1], A

SET1 SFLAG ; set sign-flag
DSUBS1:

MOV B, C ; save C-register
CLR1 CY

DSUBS2:

MOV A, [WHL]

SUBC A, [TDE+]

ADJBS ; decimal adjust
MOV [WHL+], A

DBNZ C, $DSUBS2

BNC $DSUBS5

POP WHL ;load WHL-register
PUSH WHL ;save WHL-register
MOV C, B ; load C-register

DSUBS3:

MOV A, #99H ; (WHL) <– 9 – (WHL)
SUB A, [WHL] ; increment WHL-register
ADJBS ; decimal adjust
MOV [WHL+], A

DBNZ C, $DSUBS3

POP WHL ;load WHL-register
PUSH WHL ;save WHL-register
SET1 CY

MOV C, B ; load C-register
DSUBS4:

MOV A, #0 ; Acc <– 0
ADDC A, [WHL]

ADJBA ; decimal adjust
MOV [WHL+], A

DBNZ C, $DSUBS4

NOT1 SFLAG

44

78K/IV SERIES APPLICATION NOTE

;

; **** check / result = 0 ****

;

DSUBS5:

MOV C, B ; load C-register
POP WHL ; load WHL-register
MOVG TDE, WHL

MOV A, #0

CMPME [TDE+], A

BZ $EDSUBS

BF SFLAG, $EDSUBS

MOV A, [WHL+BYTNUM-1]

SET1 A.7 ; set sign
MOV [WHL+BYTNUM-1], A

EDSUBS:

RET

45

CHAPTER 3 DECIMAL OPERATIONS

3.2 DECIMAL SUBTRACTION OF SIGNED 8 DIGITS – 8 DIGITS

(1) Outline of Processing

This section presents an example program that subtracts an 8-digit subtrahend from a signed 8-digit

minuend then stores the result into an 8-digit result area (shared with the minuend area).

(2) RAM area

When the sign bit is (0): Positive (0 through 79999999)

When the sign bit is (1): Negative (–1 through –79999999)

(3) Registers

A, B, C, TDE, and WHL registers

(4) Input

Set the following addresses in the WHL and TDE registers.

WHL: Lowest address of the RAM area containing the 8-digit (4-byte) minuend

TDE : Lowest address of the RAM area containing the 8-digit (4-byte) subtrahend

–8 digits 8 digits 8 digits

WHL

LSB

LSB

TDE

WHL+3

TDE+3

MSB

Sign bit {0: Positive, 1: Negative}

Subtrahend
area

1 digit of decimal
number

Minuend area,
result area
(shared)

1 byte

MSB

46

78K/IV SERIES APPLICATION NOTE

(5) Output

The status of the subtraction processing is indicated by the following flag.

ERRFLAG: Error flag

ERRFLAG = 0 ... No error has occurred (subtraction was completed normally)

ERRFLAG = 1 ... An error occurred (subtraction cannot be executed because overflow

or underflow occurs)

The following contents are stored into the 4-byte RAM area indicated by the WHL register.

WHL to WHL+3: Stores the result of subtractionNote

Note When the error flag (ERRFLAG) = 1, the 4-byte value indicated by the WHL register will be

undefined.

Remarks 1. The operation range is –79999999 to 79999999.

2. The error flag (ERRFLAG) is identified by the main routine. Add error processing as

necessary.

(6) Program description

This program performs the processing of “minuend – subtrahend” by converting it into “minuend +

(–subtrahend)”.

(a) Sets the number of bytes for decimal subtraction into the C counter (C register).

(b) Inverts the sign bit of the subtrahend area.

(c) Performs decimal addition by using the minuend and subtrahend areas as the augend and addend

areas.

Remark For details of the BCDAD2 subroutine (including the processing for setting the error flag

(ERRFLAG) to 1), see Section 3.1 .

The operation error processing is included in the main routine. Prepare and add error processing

as necessary.

47

CHAPTER 3 DECIMAL OPERATIONS

(7) Flowchart

(8) Program listing

• Description of label used for executing the application routine

BCDMIN : Lowest address of the RAM area containing the 8-digit (4-byte) minuend and 8-digit result

(shared)

BCDSUT: Lowest address of the RAM area containing the 8-digit (4-byte) subtrahend

• Example program listing of main routine

•

•

MOVG WHL, #BCDMIN

MOVG TDE, #BCDSUT

CALL !BCDSUB

BT ERRFLAG, $ERROR ;

BR $$;

ERROR:

CLR1 ERRFLAG ; clear error flag
•

•

Remark Set the WHL and TDE registers as shown above, then call the subroutine. Prepare and add

error processing as necessary.

BCDAD 2

BCDSUB

RET

C <– number of
bytes for decimal
subtraction

Decimal addition
with subtrahend as
addend and minu-
end as augend

Inverts sign bit
of subtrahend

48

78K/IV SERIES APPLICATION NOTE

• Program listing for this application routine

NAME BCDSUR
;***
;* decimal subtraction *
;* 8 digit <– 8 digit - 8 digit *
;* input condition *
;* WHL-register <– minus value area top.address *
;* TDE-register <– subtrahend area top.address *
;* output condition *
;* result <– (WHL, WHL+1, WHL+2, WHL+3) *
;***

PUBLIC BCDSUB

EXTRN BCDAD2

BYTNUM EQU 4

;

CSEG

BCDSUB:

MOV C, #BYTNUM ; C-register <– 4
BCDSU1:

MOV B, C ; B-register <– C-register – 1
DEC B

MOV A, [TDE+BYTNUM-1]

NOT1 A.7

MOV [TDE+BYTNUM-1],A

CALL !BCDAD2

RET

49

CHAPTER 3 DECIMAL OPERATIONS

3.3 DECIMAL MULTIPLICATION OF SIGNED 8 DIGITS x 8 DIGITS

(1) Outline of Processing

This section presents an example program that multiplies a signed 8-digit multiplicand by an 8-digit

multiplier, then stores the result into a 16-digit result area.

(2) RAM area

When the sign bit is (0): Positive (0 through 79999999)

When the sign bit is (1): Negative (–1 through –79999999)

(3) Registers

A, X, B, C, TDE, and WHL registers

(4) Input

Set the data necessary for the operation into the following 4-byte RAM areas.

DMLCND to DMLCND+3: 8-digit multiplicand data

DMLIER to DMLIER+3 : 8-digit multiplier data

(5) Output

The following 8-byte RAM area is used to store the contents shown.

DRSLT to DRSLT+7: Result of multiplication

Remark Both the multiplier and multiplicand can be between –79999999 and 79999999.

The operation result can be between –6399999840000001 and 6399999840000001.

x8 digits16 digits 8 digits

MSB LSB

DMLCND
+3

DMLCND
+2

DMLCND
+1

DMLCND
+0

DMLIER
+3

MSB LSB

DMLIER
+2

DMLIER
+1

DMLIER
+0

DRSLT
+4

DRSLT
+7

MSB

DRSLT
+3

DRSLT
+2

DRSLT
+1

DRSLT
+0

LSB

CARRY

 Sign bit {0: Positive, 1: Negative}

Number of carries
work area

Result area

Multiplier area

Multiplicand
area

 Sign bit {0: Positive, 1: Negative}

50

78K/IV SERIES APPLICATION NOTE

(6) Program description

This program shifts the multiplier 1 digit (4 bits) to the right then loads the multiplicand into the addition

counter, starting from the lowest digit, 1 digit at a time. Using the addition counter, the “result <– result

+ multiplicand” operation is repeated.

When addition using the addition counter has ended, addition is performed using the multiplier 1 digit

higher; therefore, the result area is shifted 1 digit (4 bits) to the right.

The processing is explained below:

(a) Clears the result area to 0.

(b) Takes the absolute values of the multiplier area and multiplicand area. If the signs of the multiplier

and multiplicand areas are different, sets the sign identification flag (SFLAG) to 1; if the signs are the

same, clears the flag to 0.

(c) Sets the number of digits (8) for multiplication, using the B register as a digit counter.

(d) Sets the value of the lowest digit (4 bits) of the multiplier area into the addition counter (C register)

by shifting the multiplier area 1 digit (4 bits) to the right.

(e) Clears the number of carries work area (CARRY), reserved in advance and which is used to save the

number of carries, to 0.

(f) Jumps to step (i) if the value of the addition counter (C register) is 0.

(g) Executes “result area (higher 8 digits) <– result area (higher 8 digits) + multiplicand area” decimal

addition processing. If an overflow occurs, increments the value in the number of carries work area

(CARRY).

(h) Decrements the addition counter (C register), then repeats step (g) until the value of the counter

reaches 0.

(i) Shifts the result area, including the number of carries work area (CARRY), 1 digit (4 bits) to the right.

Stores the number of carries into the highest digit of the result area.

(j) Decrements the digit counter (B register), then repeats steps (d) through (i) until the value of the

counter reaches 0.

(k) Terminates the operation if the contents of the digit counter (B register) are 0.

(l) Sets the sign bit of the result area to 1 if the sign identification flag (SFLAG) is 1.

51

CHAPTER 3 DECIMAL OPERATIONS

(7) Flowchart

BCDMLT

RCLR1

BCDML3:
1

BCDRS

Yes

No
BCDML5:

No

Yes

BCDML6:

No

YesBCDML7:
BCDRS

No

Yes

Yes

No

No

Yes

RET

B = 0

Appends negative sign
to result

 (DRSLT to DRSLT+7) to 0

Conversion to absolute value
Multiplicand <– |multiplicand|

Multiplier <– |multiplier|

Sets sign identification flag
(SFLAG) to 1 if signs of mul-
tiplier and multiplicand are
different; if the signs are the
same, clear flag to 0

8 <– number of digits for
decimal multiplication

multiplier area to right

Addition counter <– A
C <– A

Number of carries <– 0
CARRY <– 0

Addition counter
C = 0

Result <– result + multiplier

 Increments number of carries
CARRY <– CARRY + 1

Decrements addition counter
C <– C – 1

area 1 digit to right.
Stores number of carries
into highest digit of result

Decrements digit counter
B <– B – 1

Result = 0

Sign
identification flag

(SFLAG) = 1

Shifts result

C = 0

CY = 1

Shifts
 Clears

1

A <– lowest digit

52

78K/IV SERIES APPLICATION NOTE

(8) Program listing

• Description of label used for execution of application routine

DMLCND: Lowest address of the RAM area containing the 8-digit (4-byte) multiplicand

DMLIER : Lowest address of the RAM area containing the 8-digit (4-byte) multiplier

CARRY : Number of carries work area

DRSLT : Lowest address of the RAM area used to contain the 16-digit (8-byte) result

SFLAG : Sign identification flag

SFLAG = 0 ... Same signs

SFLAG = 1 ... Different signs

• Example program listing for main routine

•

•

MOVW DMLCND , #12H

MOVW DMLCND+2 , #00

MOVW DMLIER , #54H

MOVW DMLIER+2 , #12H

CALL !BCDMLT

•

•

Remark Set the multiplicand and multiplier as shown above, then call the subroutine.

53

CHAPTER 3 DECIMAL OPERATIONS

• Program listing for this application routine

NAME BCDMLR
;***
;* decimal multiplication *
;* 16 digit <– 8 digit * 8 digit *
;* input condition *
;* multiplicand <– (DMLCND+3, ..., DMLCND) *
;* multiplier <– (DMLIER+3, ..., DMLIER) *
;* output condition *
;* result <– (DRSLT+7, ..., DRSLT) *
;***

PUBLIC BCDMLT

EXTRN DMLCND, DMLIER, DRSLT

EXTRN CARRY ; carry data set ram
EXTBIT SFLAG ;

CSEG

BCDMLT:

;

; **** result area 0-clear ****

;

MOV C, #8 ; C-register <– 8
MOVG TDE, #DRSLT ; TDE <– DRSLT
MOV A, #0 ; Acc <– 0
MOVM [TDE+], A ;

;

; **** check / sign ****

;

CLR1 SFLAG ; clear sign-flag
BF DMLCND+3.7, $BCDML1

CLR1 DMLCND+3.7

NOT1 SFLAG ; not sign-flag
BCDML1:

MOV A, [WHL]

BF DMLIER+3.7, $BCDML2

CLR1 DMLIER+3.7

NOT1 SFLAG ; not sign-flag
;

; **** digit counter set ****

;

BCDML2:

MOV B, #8 ; B-register <– 8
;

; **** multiplier right shift ****

;

54

78K/IV SERIES APPLICATION NOTE

BCDML3:

MOVG WHL, #DMLIER+3

MOV C, #4 ; C-register <– 4
;

MOV A, #0 ; Acc <– 0
BCDRS:

ROR4 [WHL]

DECG WHL ; decrement (WHL)
DBNZ C, $BCDRS

MOV C, A ; C-register <– Acc
MOV CARRY, #0 ; carry <– 0

;

; **** check / multiplier = 0 ? ****

;

ADD A, #0

BZ $BCDML7 ; if Acc = 0 then go to BCDML6
;

; **** result <– DMLCND + result ****

;

BCDML4:

MOVG TDE, #DMLCND ; TDE <– DMLCND
MOVG WHL, #DRSLT+4 ; WHL <– DRSLT+4
CLR1 CY ; clear carry
PUSH AX ; save AX-register
PUSH BC ; save BC-register
MOV C, #4 ; C-register <– 4

BCDML5:

MOV A, [WHL]

ADDC A, [TDE+]

ADJBA ; decimal adjust
MOV [WHL+], A

DBNZ C, $BCDML5

POP BC ; load BC-register
POP AX ; load AX-register
BNC $BCDML6

INC CARRY

BCDML6:

DBNZ C, $BCDML4

;

; **** result right shift with carry ****

;

BCDML7:

MOV A, CARRY

MOVG WHL, #DRSLT+7 ; WHL <– DRSLT+7
MOV C, #8

BCDRS1:

ROR4 [WHL]

DECG WHL ; decrement (WHL)
DBNZ C, $BCDRS1

;

; **** check / multiply end ? ****

55

CHAPTER 3 DECIMAL OPERATIONS

;

DBNZ B, $BCDML3

;

; **** check / multiply = 0 ****

;

MOVG TDE, #DRSLT

MOV C, #8

MOV A, #0

BCDML8:

CMPME [TDE+], A

BZ $BCDML9

;

; **** check / sign-flag ****

;

BF SFLAG, $BCDML9

MOVG WHL, #DRSLT+7

MOV A, [WHL]

SET1 A.7

MOV [WHL], A

BCDML9:

RET

56

78K/IV SERIES APPLICATION NOTE

3.4 DECIMAL DIVISION OF SIGNED 8 DIGITS/8 DIGITS

(1) Outline of Processing

This section presents an example of a program that divides a signed 8-digit dividend by an 8-digit divisor,

then stores the result into an 8-digit result area, and the remainder into an 8-digit remainder area.

(2) RAM area

Caution The dividend and quotient areas (DIVIND, ..., DIVIND+3) and remainder area (RMIND, ...,

RMIND+3) must all be contiguous 8-byte RAM areas.

When the sign bit is (0): Positive (0 through 79999999)

When the sign bit is (1): Negative (–1 through –79999999)

(3) Registers

A, X, B, C, TDE, and WHL registers

Remark When the X register takes the absolute value of the dividend or divisor, the following bits of the

register are used as flags.

• QUOFLAG: Bit 0 of X register is used as quotient sign flag

• REMFLAG: Bit 1 of X register is used as remainder sign flag

(4) Input

Set the data necessary for the operation into the following 4-byte RAM areas.

DIVIND to DIVIND+3 : 8-digit dividend data

DIVSOR to DIVSOR+3: 8-digit divisor data

÷

Remainder

Quotient 8 digits 8 digits 8 digits

8 digits

MSB LSB MSB LSB

LSBMSB

DIVSOR
+0

DIVSOR
+1

DIVSOR
+3

DIVIND
+0

DIVIND
+1

DIVIND
+3

RMIND
+0

RMIND
+1

RMIND
+3

Sign bit {0: Positive, 1: Negative}

Remainder area
Dividend area, quotient area (shared)

Divisor area

Sign bit {0: Positive, 1: Negative}

Sign bit {0: Positive, 1: Negative}

57

CHAPTER 3 DECIMAL OPERATIONS

(5) Output

The status of the division processing is indicated by the following flag.

ERRFLAG: Error flag

ERRFLAG = 0 ... No error has occurred (division was completed normally)

ERRFLAG = 1 ... An error occurred (division cannot be executed because the divisor

is 0)

The following contents are stored into the following 4-byte RAM areas.

DIVIND to DIVIND+3 : Quotient resulting from division operationNote

RMIND to RMIND+3 : Remainder resulting from division operationNote

Note These values will be the same as those before the operation if the error flag (ERRFLAG) is

set to 1.

Remark The value of the error flag (ERRFLAG) is determined by the main routine. Add error processing

as necessary.

58

78K/IV SERIES APPLICATION NOTE

(6) Program description

This program uses contiguous 8-byte areas as the dividend and quotient (DIVIND, ..., DIVIND+3), and

remainder (RMIND, ..., RMIND+3) areas.

The highest digit of the dividend is transferred to the lowest area of the remainder by shifting the dividend

and remainder 1 digit to the left, while the quotient is stored into the lowest area of the dividend, 1 digit

at a time.

Each digit of the quotient indicates the number of times the operation must be repeated until the result

of “remainder – divisor” becomes negative.

(a) Identifies whether the value of the divisor area is 0. If it is 0, sets the error flag (ERRFLAG) to 1, and

terminates the operation with only information indicating the occurrence of an error remaining.

(ERRFLAG = 0 ... No error has occurred, ERRFLAG = 1 ... An error occurred)

(b) Clears the remainder area to 0.

(c) Obtains the absolute values of the dividend and divisor areas.

If either the dividend or divisor areas is negative, sets the quotient sign flag (QUOFLAG) to 1.

(QUOFLAG = 0 ... Sign of quotient is positive, QUOFLAG = 1 ... Sign of quotient is negative)

If the dividend is negative, sets the remainder sign flag (REMFLAG) to 1.

(REMFLAG = 0 ... Sign of remainder is positive, REMFLAG = 1 ... Sign of remainder is negative)

(d) Sets the number of bits (8) in the dividend area by using the C register as a bit counter that counts

the number of bits in the dividend area.

(e) Shifts the remainder and quotient areas (contiguous 8-byte areas) 4 bits to the left.

(f) Executes the “remainder area <– remainder area – divisor area” operation.

If the result is negative, jumps to (h).

(g) Increments the quotient area (DIVIND). Jumps to (i).

(h) Because too great a value has been subtracted from the remainder area, executes the “remainder

area <– remainder area + divisor area” operation to restore the original value of the remainder area.

(i) Decrements the bit counter (C register) of the dividend area, then repeats steps (e) through (h) until

the value of the counter reaches 0.

(j) Jumps to step (l) if the quotient is 0.

(k) Sets the sign bit of the quotient area to 1 if the quotient sign flag (QUOFLAG) is 1.

(l) Terminates the operation if the remainder is 0.

(m) Sets the sign bit of the remainder area to 1 if the remainder sign flag (REMFLAG) is 1.

Remark For details of the BCDAD2 subroutine, see Section 3.1 . For details of the BCDSUB subroutine,

see Section 3.2 .

For details of the processing to set the error flag (ERRFLAG) to 1, and of the error processing,

see Section 3.1 .

59

CHAPTER 3 DECIMAL OPERATIONS

(7) Flowchart

BCDDIV

Yes

No

BCDDV9

RCLR

1

1
BCDDV5:

BCDDV6:

BCDSUB

Yes

No

Yes

No

BCDADD
BCDDV7:

Yes

No

No

Yes

No

No

Yes

BCDDV8:

Yes

No

No

Yes

BCDDV9:

RET

C = 0

Sets sign bit of remainder
area to 1

Remainder
sign flag (SF_REM)

= 1

Remainder = 0

Sets sign bit of quotient
area to 1

 Quotient
sign flag (SF_QUO)

= 1

Quotient = 0

 Error flag
(ERRFLAG)

= 1

Remainder <– remainder + divisor

Quotient <– quotient + 1

Remainder < 0

Error flag
(ERRFLAG)

= 1

Remainder <– remainder – divisor

Shifts 8 bytes of quotient
and remainder 1 digit to left

Clears error flag
(ERRFLAG) to 0

Divisor = 0

Clears remainder area
(RMIND to RMND+7)

Dividend <– |dividend|
Divisor <– |divisor|

Sets quotient sign flag
(SF_QUO) to 1 if sign bits
of divisor and dividend
are different; clears flag
to 0 if signs are same

Remainder sign flag
(SF_REM) <– dividend sign

C <– number of bytes of
dividend and divisor

Sets error flag
(ERRFLAG) to 1

C <– C – 1

60

78K/IV SERIES APPLICATION NOTE

(8) Program listing

• Description of label used for executing application routine

DIVSOR : Lowest address of the RAM area containing the 8-digit (4-byte) dividend and 8-digit

quotient

DIVIND : Lowest address of the area containing the 8-digit (4-byte) remainder resulting from division

RMIND : Lowest address of the area containing 8-digit (4-byte) divisor

QUOFLAG: Quotient sign flag

QUOFLAG = 0 ... Sign of quotient is positive

QUOFLAG = 1 ... Sign of quotient is negative

REMFLAG : Remainder sign flag

REMFLAG = 0 ... Sign of remainder is positive

REMFLAG = 1 ... Sign of remainder is negative

SFLAG : Sign identification flag

SFLAG = 0 ... Same signs

SFLAG = 1 ... Different signs

ERRFLAG : Error flag

ERRFLAG = 0 ... No error has occurred

ERRFLAG = 1 ... An error occurred

• Example of program listing for main routine

•

•

MOVW DIVSOR , #42H

MOVW DIVSOR+2 , #65H

MOVW DIVIND , #12H

MOVW DIVIND+2 , #34H

CALL !BCDDIV

BT ERRFLAG, $ERROR ;

BR $$;

ERROR:

CLR1 ERRFLAG ; clear error flag
•

•

Remark Set the dividend and divisor as shown, then call the subroutine.

61

CHAPTER 3 DECIMAL OPERATIONS

• Program listing for this application routine

NAME BCDIVR
;***
;* decimal division *
;* 8 digit <– 8 digit / 8 digit *
;* input condition *
;* dividend <– (DIVIND+3, ..., DIVIND) *
;* divisor <– (DIVSOR+3, ..., DIVSOR) *
;* output condition *
;* quotient <– (DIVIND+3, ..., DIVIND) *
;* remainder <– (RMIND+3, ..., RMIND) *
;***

PUBLIC BCDDIV

EXTRN BCDSUB

EXTRN BCDADD, BCDAD2

EXTRN DIVSOR, DIVIND, RMIND

EXTBIT ERRFLAG

EXTBIT SFLAG

EXTBIT REMFLAG, QUOFLAG

BYTNUM EQU 4

;

CSEG

BCDDIV:

CLR1 ERRFLAG ;clear error flag
;

; **** check / divisor = 0 ? ****

;

MOV C, #4 ; C-register <– 4
MOV A, #0 ; Acc <– 0
MOVG TDE, #DIVSOR ; TDE <– DIVSOR

BCDDV1:

CMPME [TDE+], A ; (TDE) = 0 ?
BNZ $BCDDV2 ;

SET1 ERRFLAG ;overflow
RET ;

;

; **** result, remind 0-clear ****

;

BCDDV2:

MOVG TDE, #RMIND ; TDE <– RMIND
MOV C, #BYTNUM ;C-register <– 4
MOV A, #0 ; Acc <– 0
MOVM [TDE+], A

;

; *** check / sign ****

;

CLR1 QUOFLAG ;clear quotient sign-flag
CLR1 REMFLAG ;clear remainder sign-flag

62

78K/IV SERIES APPLICATION NOTE

BF DIVIND+3.7, $BCDDV3

CLR1 DIVIND+3.7

SET1 REMFLAG ;set remainder sign-flag
NOT1 QUOFLAG ;not quotient sign-flag

BCDDV3:

BF DIVSOR+3.7, $BCDDV4

CLR1 DIVSOR+3.7

NOT1 QUOFLAG

;

; **** digit counter set ****

;

BCDDV4:

MOV C, #8

;

; **** quotient, remind left shift ****

;

BCDDV5:

PUSH BC

MOVG WHL, #DIVIND ; WHL <– DIVIND
MOV C, #16/2 ; C-register <– 8

;

MOV A, #0

BCDLS1:

ROL4 [WHL]

INCG WHL ; increment (WHL)
DBNZ C, $BCDLS1

;

; **** subtract divisor from dividend ****

;

BCDDV6:

MOVG TDE, #DIVSOR ; TDE <– DIVSOR
MOVG WHL, #RMIND ; WHL <– RMIND

;

CALL !BCDSUB ; decimal subtraction

BT ERRFLAG, $BCDDV9 ; if error then go to BCDDV9

MOVG WHL, #RMIND+3

MOV A, [WHL]

BT A.7, $BCDDV7 ; if borrow then go to BCDDV7

MOV A, #1

MOVG WHL, #DIVIND

ADD A, [WHL] ; increment (DIVIND)
MOV [WHL], A

BR BCDDV6

;

; **** if borrow then divisor + dividend ****

63

CHAPTER 3 DECIMAL OPERATIONS

;

BCDDV7:

MOVG TDE, #DIVSOR ; TDE <– DIVSOR
MOVG WHL, #RMIND ; WHL <– RMIND
CALL !BCDADD ; decimal addition

BT ERRFLAG, $BCDDV9 ; if error then go to BCDDV9
;

; **** check / division end ? ****

;

POP BC

DBNZ C, $BCDDV5

;

; **** check / quotient = 0 ****

;

MOVG TDE, #DIVIND

MOV A, #0

MOV C, #4

CMPME [TDE+], A

BZ $BCDDV8

;

; **** check / quotient sign-flag ****

;

BF QUOFLAG, $BCDDV8

MOVG WHL, #DIVIND+3

SET1 [WHL].7

;

; **** check / remainder = 0 ****

;

BCDDV8:

MOVG TDE, #RMIND

MOV C, #4

CMPME [TDE+], A

BZ $BCDDV9

;

; **** check / remainder sign-flag ****

;

BF REMFLAG, $BCDDV9

MOVG WHL, #RMIND+3

SET1 [WHL].7

BCDDV9:

RET

64

78K/IV SERIES APPLICATION NOTE

[MEMO]

CHAPTER 4 SHIFT PROCESSING

The 78K/IV Series devices support instructions that shift general registers (X, A, C, B, E, D, L, H, and R4

through R11) and general register pairs (AX, BC, DE, HL, VP, UP, RP2, and RP3) in 1-bit units, as well as

4-bit shift instructions ROR4 and ROL4.

This chapter presents example programs featuring the following two types of shift instructions.

(i) Shifting in 1-byte units [XCHM [TDE+], A, XCHM [TDE–], and A instructions]

(ii) Shifting in 4-bit units [ROR4 mem and ROL4 mem instructions]

4.1 SHIFTING N-BYTE DATA 1 BYTE TO THE RIGHT

(1) Outline of processing

This section presents an example program that shifts N-byte data 1 byte to the right by using the XCHM

instruction. When shifting N-byte data 1 byte to the right as shown below, set the values described in

(4) in the appropriate registers, then execute this subroutine.

(2) RAM area

(3) Registers

A, C, and TDE registers

(4) Input

Load the following data into the A, C, and TDE registers.

A : Value to be transferred to the highest address of the N-byte data

C : Number of bytes to be shifted (N)

TDE : Highest address of the N-byte data to be shifted

0 1 2 3 4 5 6

0 1 2 3 4 56

TDE

MSB

MSB LSB

LSB

(Before execution)

A register

A register

(After execution)

N-byte data area,
result area (shared)

65

66

78K/IV SERIES APPLICATION NOTE

(5) Output

The following contents are stored into the N-byte RAM area indicated by the TDE register.

TDE: Contents of N-byte data, shifted 1 byte to the right (The value of the A register is loaded into

the most significant byte position of the N-byte data.)

(6) Program description

When the program is executed, the contents of the A register, specified as the input conditions, are

exchanged with the contents of the RAM area indicated by the TDE register, after which the contents of

the TDE register are decremented. Subsequently, the contents of the C register are decremented. This

procedure is repeated until the contents of the C register are decremented to 0. As a result, the value

set in the A register is stored into the most significant byte, and the contents of the least significant byte

are output to the A register, shifting the 6-byte data 1 byte to the right.

(7) Flowchart

None

67

CHAPTER 4 SHIFT PROCESSING

(8) Program listing

• Labels used for execution of application routine

AREGDT: Value to be transferred to the most significant address of the N-byte data

BYTNUM: Number of bytes to be shifted (N)

R6SIFT : Least significant address of the N-byte data

• Example program listing for main routine

The following shows an example of the setting necessary when 6-byte data is shifted.

•

•

BYTNUM EQU 6

•

•

MOV A, #AREGDT ; shift in data
MOV C, #BYTNUM ;shift byte number
MOVG TDE, #R6SIFT+5 ;

CALL !BYTRST ; right shift
•

•

Remark Set the A, C, and TDE registers as shown above, then call the subroutine.

• Program listing for this application routine

NAME BYTRSR
;***
;* 1_byte data right shift of 6-byte data *
;* input condition *
;* TDE –register <– MSB of N-byte data *
;* C –register <– byte counter *
;* output condition *
;* Acc <– LSB of 6-byte data *
;***

PUBLIC BYTRST

;

CSEG

BYTRST:

XCHM [TDE-], A

RET

68

78K/IV SERIES APPLICATION NOTE

LSDMSB

WHL WHL+(N/2–1)

N-digit data area,
result area (shared)

4.2 SHIFTING N-DIGIT DATA 1 BYTE TO THE RIGHT (DECIMAL 1/10 PROCESSING)

(1) Outline of processing

This section presents an example program that shifts N-digit data 1 digit to the right by using a shift

instruction in 4-bit units (ROR4 mem or ROL4 mem).

When shifting N-digit data 1 digit (4 bits) to the right, set the values described in (4) into the appropriate

registers, then execute this subroutine.

(2) RAM area

(3) Registers

A, C, and WHL registers

(4) Input

Set the following data into the WHL and C registers.

WHL : Highest address of the RAM area into which N-digit data is to be stored

C : Number of bytes to be shifted (N/2)

(5) Output

The following contents are stored into the N/2-byte RAM area indicated by the TDE register.

TDE : Contents of N-digit data, shifted 1 digit (4 bits) to the right (0 is loaded into the most significant

digit of the N-digit data.)

(6) Program description

(a) Set 0 into the A register.

(b) Rotate the contents of the RAM area, indicated by the low-order 4 bits of the A register and WHL

register, to the right.

(c) The C register is used as a counter that counts the number of times that data is shifted. The value

of this counter is decremented.

When the value of the shift counter (C register) reaches 0, the processing has been completed.

Otherwise, the processing returns to step (b).

A register WHL register

Higher Lower Lower Higher

69

CHAPTER 4 SHIFT PROCESSING

(7) Flowchart

None

(8) Program listing

• Labels used for execution of application routine

BYTNUM : Number of bytes to be shifted (N/2)

R4SIFT : Lowest address of RAM area containing N-digit data

• Example program listing for main routine

The following shows an example of setting 8-digit data.

•

•

BYTNUM EQU 4

•

•

MOV C, #BYTNUM ;8 digit / 2
MOVG WHL, #R4SIFT+3 ;

CALL !BCDRS ;right shift
•

•

Remark Set the C and WHL registers as shown above, then call the subroutine.

• Program listing for this application routine

NAME BCDRSR
;***
;* N-digit data right shift *
;* input condition *
;* WHL-register <– MSD of N-digit data *
;* C -register <– digit counter *
;* output condition *
;* Acc <– LSD of N-digit data *
;***

PUBLIC BCDRS, BCDRS1

;

CSEG

BCDRS:

MOV A, #0 ; Acc <– 0
BCDRS1:

ROR4 [WHL]

DECG WHL ; decrement (WHL)
DBNZ C, $BCDRS1

RET ;

70

78K/IV SERIES APPLICATION NOTE

[MEMO]

LSBMSB

TDE+N–1 TDE+0

Transfer data
storage area

CHAPTER 5 BLOCK TRANSFER PROCESSING

This chapter presents block transfer programs that use the string instructions that are unique to the

78K/IV Series.

5.1 BLOCK TRANSFER PROCESSING OF FIXED BYTE DATA

(1) Outline of processing

This section presents an example program that stores 1-byte data into a specified N-byte RAM area by

using the MOVM instruction.

This processing is effective for initializing a specific RAM area.

(2) RAM area

(3) Registers

A, C, and TDE registers

(4) Input

Set the following data in the A, C, and TDE registers.

A : Data to be transferred

C : Number of bytes to be transferred

TDE : Lowest address of RAM area containing N-byte transferred data

(5) Output

The following contents are stored into the RAM area, starting from the address indicated by the TDE

register.

TDE: The contents of the A register are stored into an N-byte RAM area.

(6) Program description

(a) Sets the lowest address of the RAM area containing N-byte transferred data into the TDE register.

(b) Using the C register as a counter for counting the number of bytes transferred, sets the number of

bytes transferred (BYTNUM).

(c) Writes the data to be transferred into the A register.

(d) Transfers the contents of the A register to the RAM area specified by the TDE register, then

decrements the transfer counter (C register).

When the value of the transfer counter (C register) reaches 0, the processing is terminated.

71

72

78K/IV SERIES APPLICATION NOTE

(7) Flowchart

None

(8) Program listing

• Labels used for execution of application routine

BYTNUM : Number of bytes subject to block transfer (N)

DATASET: Lowest address of RAM area to which N-byte data is to be transferred

• Program listing for this application routine

The following shows an example of writing 0 to an entire 8-byte RAM area.

•

•

BYTNUM EQU 8

•

•

MOVG TDE, #DATASET ;

MOV C, #BYTNUM ; C <– byte number (8byte)
MOV A, #0 ; Acc <– 0
MOVM [TDE+], A ;

•

•

Remark When the program is developed as shown above, the value of register A is stored into the

RAM area addressed by the TDE register, the number of times specified in the C register.

73

CHAPTER 5 BLOCK TRANSFER PROCESSING

5.2 BLOCK TRANSFER PROCESSING OF BYTE DATA

(1) Outline of processing

This section presents an example program that transfers the contents of an N-byte RAM area indicated

by the WHL register to an N-byte RAM area indicated by the TDE register by using the MOVBK instruction

(MOVBK [TDE+], [WHL+]).

(2) RAM area

(3) Registers

A, C, TDE, and WHL registers

(4) Input

Set the following data in the TDE, WHL, and C registers.

TDE : Lowest address of the RAM area containing the transferred N-byte data

WHL : Lowest address of the RAM area containing the N-byte data to be transferred

C : Number of bytes to be transferred

(5) Output

The following contents are stored into the RAM area, starting from the address indicated by the TDE

register.

TDE: Contents of an N-byte RAM area indicated by the WHL register

(6) Program description

(a) Sets the lowest address of the RAM area containing the N-byte data to be transferred, into the WHL

register.

(b) Sets the lowest address of the RAM area to which the N-byte data will be transferred, into the TDE

register.

(c) By using the C register as a transfer counter that counts the number of bytes to be transferred, sets

the number of bytes to be transferred (BYTNUM).

(d) Transfers the data in the RAM area specified by the WHL register into the RAM area specified by the

TDE register, then decrements the value of the transfer counter (C register).

When the value of the transfer counter (C register) reaches 0, processing ends.

LSBMSB

TDE+N–1 TDE+0

LSBMSB

WHL+N–1 WHL+0

Transfer data
setting area

Transfer data
storage area

74

78K/IV SERIES APPLICATION NOTE

(7) Flowchart

None

(8) Program listing

• Labels used for execution of application routine

BYTNUM : Number of bytes subject to block transfer (N)

TENSODT : Lowest address of the RAM area containing the N-byte data to be transferred

KAKUNOU: Lowest address of the RAM area to which the N-byte data will be transferred

• Program listing for this application routine

The following shows an example of transferring the contents of an 8-byte RAM area.

•

•

BYTNUM EQU 8

•

•

MOVG WHL, #TENSODT ; set address
MOVG TDE, #KAKUNOU ;

MOV C, #BYTNUM ; C <– byte number (8byte)
MOVBK [TDE+], [WHL+] ;

•

•

Remark When the program is developed as shown above, the value in the RAM area addressed by

the WHL register is transferred to the area addressed by the TDE register, the number of

times set in the C register.

75

CHAPTER 5 BLOCK TRANSFER PROCESSING

5.3 BLOCK COMPARISON (COINCIDENCE DETECTION) OF BYTE DATA

(1) Outline of processing

This section presents an example program that compares (detects any coincidence between) the contents

of the N-byte RAM area indicated by the WHL register with the contents of the N-byte RAM area indicated

by the TDE register by using the CMPBKE instruction (CMPBKE [TDE+], [WHL+]).

(2) RAM area

(3) Registers

A, C, TDE, and WHL registers

(4) Input

Set the following data in the TDE, WHL, and C registers.

TDE : Lowest address of the RAM area (1) containing the N-byte data to be compared

WHL : Lowest address of the RAM area (2) containing the N-byte data to be compared

C : Number of bytes to be compared

(5) Output

The result of the comparison (coincidence detection) is indicated by the Z (zero) flag.

Z (zero flag) : Z (zero flag) of PSW (program status word)

Z = 0 … No coincidence was detected

Z = 1 … Coincidence was detected

WHL+N–1

MSB

MSB

TDE+N–1

LSB

TDE+0

LSB

WHL+0

Compare

Compare data
setting area (2)

Compare data
setting area (1)

Compare Compare Compare Compare

76

78K/IV SERIES APPLICATION NOTE

(6) Program description

(a) Sets the lowest address of RAM area (1) containing the N-byte data to be compared into the WHL

register.

(b) Sets the lowest address of RAM area (2) containing the N-byte data to be compared into the TDE

register.

(c) By using the C register as a comparison counter to count the number of bytes to be compared, sets

the number of bytes to be compared (BYTNUM).

(d) Compares the data in the RAM area specified by the WHL register with the data in the RAM area

specified by the TDE register, and decrements the value of the comparison counter (C register).

If the data in the two RAM areas does not coincide, or if the value of the comparison counter (C register)

reaches 0, processing ends.

(7) Flowchart

Omitted because the number of program steps is minimal.

(8) Program listing

• Labels used for execution of application routine

COMPDTA: Lowest address of the RAM area (1) containing the N-byte data to be compared

COMPDTB: Lowest address of the RAM area (2) containing the N-byte data to be compared

BYTNUM : Number of bytes to be compared (N)

• Program listing for this application routine

The following shows an example of comparing the contents of 8-byte RAM areas.

•

•

BYTNUM EQU 8

•

•

MOVG WHL, #COMPDTA ;

MOVG TDE, #COMPDTB ;

MOV C, #BYTNUM ; C <– byte number (8byte)

CMPBKE [TDE+], [WHL+] ;

•

•

Remark When the program is developed as shown above, the value in the area addressed by the

TDE register is compared with that in the area addressed by the WHL register, the number

of times specified by the C register.

CHAPTER 6 DATA EXCHANGE PROCESSING

This chapter presents example programs that convert the format of numeric data from hexadecimal to

decimal and vice versa, as well as from hexadecimal to ASCII and vice versa.

6.1 CONVERTING A HEXADECIMAL NUMBER (HEX) TO A DECIMAL NUMBER (BCD)

(1) Outline of processing

This section presents an example program that converts 4-byte hexadecimal data into 8-digit decimal data.

(2) RAM area

(3) Registers

A, X, D, E, UP, and WHL registers

(4) Input

Set the following address in the WHL register.

WHL: Lowest address of the RAM area containing the 4-byte hexadecimal number to be converted

(5) Output

The following flag indicates the status of the conversion processing.

ERRFLAG: Error flag

ERRFLAG = 0 … No error occurred (data conversion was completed normally)

ERRFLAG = 1 … An error occurred (data cannot be converted because it is outside the

valid range)

The following contents are stored into the 4-byte area indicated by the WHL register.

WHL to WHL+3: 8-digit decimal value resulting from conversionNote

Note The value of the 4-byte data indicated by the WHL register is undefined when the error flag

(ERRFLAG) = 1.

Remarks 1. Values between 00000000H (0) and 05F5E0FFH (99999999) can be converted.

2. The error flag (ERRFLAG) is read by the main routine. Add error processing as necessary.

MSB LSB

WHL+3 WHL+2 WHL+1 WHL

4-byte hexadecimal data
setting area, 8-digit decimal
data storage area (shared)

77

78

78K/IV SERIES APPLICATION NOTE

(6) Program description

(a) Compares the 4-byte hexadecimal data indicated by the WHL register with 05F5E0FFH.

(b) If the value of the 4-byte hexadecimal data is greater than 05F5E0FFH, the error flag (ERRFLAG)

is set to 1 and conversion ends because this value falls outside the supported conversion range.

(c) Sets the 4-byte hexadecimal data to be converted into the AX and DE registers (the high-order 2 bytes

are written into the AX register and the low-order 2 bytes are written into the DE register).

(d) Writes the divisor (10) into the UP register.

(e) Executes “4-byte hexadecimal data/divisor” (the remainder is loaded into the UP register).

(f) Stores the remainder into the low-order 4 bits of the 8-digit decimal data storage area indicated by

the WHL register.

(g) Compares the quotient in the AX and DE register with the divisor. If the quotient is greater, jumps

to step (h); otherwise, stores the quotient into the high-order 4 bits of the 8-digit decimal data storage

area indicated by the WHL register.

(h) Writes the divisor (10) into the UP register.

(i) Executes “input 2-byte hexadecimal data/divisor” (the remainder is loaded into the UP register).

(j) Stores the remainder into the high-order 4 bits of the 8-digit decimal data storage area indicated by

the WHL register, then increments the WHL register.

(k) Compares the quotient stored in the AX and DE register with the divisor. If the quotient is greater,

returns to step (d); if not, stores the quotient into the low-order 4 bits of the 8-digit decimal data storage

area indicated by the WHL register.

(l) Clears the error flag (ERRFLAG) to 0 to indicate that conversion was completed without error, then

terminates the conversion processing.

79

CHAPTER 6 DATA EXCHANGE PROCESSING

(7) Flowchart

THXBCD

No

Yes ERROR:

RET

THXBC2:

No

Yes

RET

AX, DE < 05F5E0FFH

AX, DE <– hexadecimal data Sets error flag (ERRFLAG)
to 1

Clears error flag
(ERRFLAG) to 0

[WHL] low-order 4 bits
<– quotient

Quotient < remainder

Increments WHL register

[WHL] high-order 4 bits
<– remainder

4-byte hexadecimal
data/divisor

Sets divisor
UP <– divisor (10)

[WHL] lower 4 bits
<– remainder

4-byte hexadecimal
data/divisor

Set divisor
UP <– divisor (10)

4-byte hexadecimal
data/divisor

80

78K/IV SERIES APPLICATION NOTE

(8) Program listing

• Labels/flags used for execution of application routine

HEXDAT : Lowest address of the RAM area containing the 4-byte hexadecimal number to be

converted

ERRFLAG : Error flag

ERRFLAG = 0 ... No error occurred

ERRFLAG = 1 … An error occurred

• Example program listing for main routine

•

•

MOVG WHL, #HEXDAT

CALL !THXBCD

BT ERRFLAG, $ERROR

BR $$

ERROR:

CLR1 ERRFLAG ; clear error flag
 •

•

Remark Set the WHL register as shown above then call the subroutine. Prepare and add error

processing as necessary.

81

CHAPTER 6 DATA EXCHANGE PROCESSING

• Program listing for this application program

NAME TRBCDR
;***
;* transform BCD <– HEX *
;* input condition *
;* WHL-register <– HEX-4 byte data *
;* LSB address *
;* output condition *
;* normal ... cy = 0 *
;* decimal 8-digit –> (WHL-WHL+3) *
;* overflow ... cy = 1 *
;* HEX data > 99999999 *
;***

PUBLIC THXBCD

EXTBIT ERRFLAG ;

;

CSEG

THXBCD:

MOVW AX, [WHL+0] ;

MOVW DE, AX ;

MOVW AX, [WHL+2] ;

CMPW AX, #5F5H ;

BC $THXBC2 ;

BNZ $ERHXBCD ;

MOVW DE, AX ;

MOVW AX, [WHL+0] ;

CMPW AX, #0E0FFH ;

BC $THXBC1 ;

BNZ $ERHXBCD ;

THXBC1:

XCHW AX, DE ; AXDE <– hex data set
THXBC2:

MOVW UP, #10 ; set divisor
DIVUX UP ; AXDE / UP
PUSH AX ; save AX-register
MOVW AX, UP ;

MOVW [WHL], AX ;

POP AX ; load AX-register
CMPW AX, #00 ;

BNZ $THXBC3 ;

CMPW DE, #10 ;

BC $HENEND ;

82

78K/IV SERIES APPLICATION NOTE

;

THXBC3:

MOVW UP, #10 ; set divisor
DIVUX UP ; AXDE / UP
PUSH AX ; save AX-register
MOVW AX, UP ;

ROL X, 4 ;

XCH A, X ;

OR [WHL+], A ;

POP AX ; load AX-register
CMPW AX, #00 ;

BNZ $THXBC2 ;

CMPW DE, #10 ;

BNC $THXBC2 ;

XCH A, E ;

MOV [WHL], A ;

BR HENEND1 ;

HENEND:

ROL E, 4 ;

XCH A, E ;

OR [WHL], A ;

HENEND1:

CLR1 ERRFLAG ;no error
RET

;

ERHXBCD:

SET1 ERRFLAG ;set error
RET

END

83

CHAPTER 6 DATA EXCHANGE PROCESSING

6.2 CONVERTING A DECIMAL NUMBER (BCD) TO A HEXADECIMAL NUMBER (HEX)

(1) Outline of processing

This section presents an example program that converts a 4-digit decimal number to a 2-byte hexadecimal

number.

(2) RAM area

(3) Registers

A, X, B, C, DE, and WHL registers

(4) Input

Set the following address in the WHL register.

WHL: Lowest address of the RAM area containing the 4-digit decimal number to be converted

(5) Output

The following flag indicates the status of the conversion processing.

ERRFLAG: Error flag

ERRFLAG = 0 … No error occurred (data conversion was completed normally)

ERRFLAG = 1 … An error occurred (data could not be converted because it is not a

decimal number)

The following contents are stored into the 2-byte area indicated by the WHL register.

WHL to WHL+1: 4-digit hexadecimal number resulting from conversionNote

Note The value of the 2-byte data indicated by the WHL register is undefined when the error flag

(ERRFLAG) = 1.

Remarks 1. Values between 0 and 9999 can be converted.

2. The error flag (ERRFLAG) is read by the main routine. Add error processing as necessary.

MSB LSB

WHL+1 WHL

4-digit decimal data setting area,
2-byte hexadecimal data storage
area (shared)

84

78K/IV SERIES APPLICATION NOTE

(6) Program description

This program shifts 4-digit decimal data 1 digit (4 bits) to the left, starting from the most significant digit.

It then transfers the data to the A register, 1 digit at a time, and converts the decimal data to hexadecimal

data by repeating the following processing four times:

(Storage area) <– (Storage area) x 10 + A register

The processing procedure is as follows.

(a) Sets the number of digits to be converted (4) by using the B register as an address pointer to the 4-

digit decimal data to be converted.

(b) By using the DE register as a result storage register for storing the conversion result, clears the value

of the result storage register to 0.

(c) Shifts the value in the 4-digit decimal data setting area 1 digit (4 bits) to the left, then reads the value

of the most significant digit in the 4-digit decimal data area into the A register.

(d) Checks whether the value, read from the 4-digit decimal data area into the A register, is decimal data

(0 to 9). If the data is other than a decimal number, sets the error flag (ERRFLAG) to 1 to indicate

that conversion is impossible.

(e) Executes “result storage register (DE register) <– result storage register (DE register) x 10 + A

register.”

(f) Decrements the address pointer (B register) of the 4-digit decimal data. If the value of the address

pointer is other than 0, repeats (c) to (e).

(g) Stores the value of the result storage register (DE register) into the 2-byte hexadecimal data storage

area indicated by the WHL register.

(h) Clears the error flag (ERRFLAG) to 0 to indicate that the conversion has been completed without any

errors, then terminates the conversion processing.

85

CHAPTER 6 DATA EXCHANGE PROCESSING

(7) Flowchart

TBCDHX

BCDLS1

TBCDH1:

No

Yes

RET

TBCDH2:

No

Yes

TBCDH3:

No

Yes

RET

A < 10

C = 0

B = 0

Sets the number of BCD
digits to be converted
 B <– 4

Sets error flag
(ERRFLAG) to 1

 Clears error flag
(ERRFLAG) to 0

Writes result
[WHL] <– DE

Decrements "*10"
counter
 C <– C – 1

"*10" counter
C <– B

value of BCD 1 digit
to left
A <– most significant digit

Clears the result storage
register to 0
 DE <– 0

Shifts the

X <– A
A <– 0

AX <– AX*10

DE <– DE + AX

B <– B – 1

86

78K/IV SERIES APPLICATION NOTE

(8) Program listing

• Labels/flags used for execution of application routine

BCDDAT : Lowest address of the RAM area containing the 4-digit decimal number to be converted

ERRFLAG: Error flag

ERRFLAG = 0 … No error occurred

ERRFLAG = 1 … An error occurred

• Example program listing for main routine

•

•

MOVG WHL, #BCDDAT

CALL !TBCDHX

BT ERRFLAG, $ERROR

BR $$

ERROR:

CLR1 ERRFLAG ; clear error flag
•

•

Remark Set the WHL register as shown above then call the subroutine. Prepare and add error

processing as necessary.

87

CHAPTER 6 DATA EXCHANGE PROCESSING

• Program listing for this application routine

NAME TRHEXR

;***
;* transform HEX <– BCD *
;* input condition *
;* WHL-register <– decimal 4 digit data *
;* LSD address *
;* output condition *
;* normal ... cy = 0 *
;* HEX 2 byte –> (WHL, WHL+1) *
;* error ... cy = 1 *
;***

PUBLIC TBCDHX

EXTRN BCDLS1

EXTBIT ERRFLAG ;

;

CSEG

TBCDHX:

MOV B, #4 ; BCD length
MOVW DE, #0 ; result work

TBCDH1:

PUSH WHL ;save pointer
MOV C, #2 ; shift counter
MOV A, #0

CALL !BCDLS1 ; BCD left shift

POP WHL ;restore pointer
CMP A, #10 ; error check
NOT1 CY

BC $ERBCDHX ;error return

MOV C, B

MOV X, #0

XCH A, X

TBCDH2:

DEC C

BZ $TBCDH3

PUSH BC ;AX <– AX*10
MOVW BC, AX

SHLW AX, 2

ADDW AX, BC

SHLW AX, 1

POP BC

BR $TBCDH2

88

78K/IV SERIES APPLICATION NOTE

TBCDH3:

ADDW AX, DE ; result addition
MOVW DE, AX

DBNZ B, $TBCDH1 ; check length

MOVW AX, DE ; write result to memory
XCH A, X

MOV [WHL+], A

MOV A, X

MOV [WHL], A

TBCDH4:

CLR1 ERRFLAG ;no error
RET

ERBCDHX:

SET1 ERRFLAG ;set error
RET

89

CHAPTER 6 DATA EXCHANGE PROCESSING

6.3 CONVERTING AN ASCII CODE TO A HEXADECIMAL CODE

(1) Outline of processing

This section introduces an example program that converts two (2-byte) ASCII codes (30H through 39H

and 41H through 46H) to two (1-byte) hexadecimal codes (00H through 0FH).

The ASCII codes and hexadecimal codes correspond as follows:

ASCII code 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H

Hexadecimal code 0H 1H 2H 3H 4H 5H 6H 7H 8H 9H

ASCII code 41H 42H 43H 44H 45H 46H

Hexadecimal code AH BH CH DH EH FH

(2) RAM area

(3) Registers

A, B, C, and WHL registers

(4) Input

Set the following data in the BC and WHL registers.

BC : Two ASCII codes to be converted

WHL: Address of the RAM area into which the two hexadecimal codes resulting from the conversion

will be stored

(5) Output

The following flag indicates the status of the conversion processing.

ERRFLAG: Error flag

ERRFLAG = 0 … No error occurred (data conversion was completed normally)

ERRFLAG = 1 … An error occurred (data cannot be converted because it consists of

other than ASCII codes)

WHL

Two-hexadecimal-code
storage area

90

78K/IV SERIES APPLICATION NOTE

The following contents are stored into the 1-byte RAM area indicated by the WHL register.

WHL: Two hexadecimal codes resulting from the conversionNote

Note The 1-byte value indicated by the WHL register is undefined if the error flag (ERRFLAG) is 1.

Remark The error flag (ERRFLAG) is read by the main routine. Prepare and add error processing as

necessary.

(6) Program description

(a) Reads the first code (B register) of the ASCII codes into the A register.

(b) Checks whether the contents of the A register are between 30H and 39H or between 41H and 46H.

If not, sets the error flag (ERRFLAG) to 1 to indicate that conversion is impossible, then terminates

the conversion processing.

(c) Subtracts 30H from the contents of the A register if the contents are between 30H and 39H.

Subtracts 37H from the contents of the A register if the contents are between 41H and 46H.

(d) Shifts the contents of the two-hexadecimal-code storage area, indicated by the WHL register, 4 bits

to the left, and stores the contents of the A register into the low-order 4 bits.

(e) Reads the second (C register) of the ASCII codes into the A register, then performs steps (b) through

(d).

91

CHAPTER 6 DATA EXCHANGE PROCESSING

(7) Flowchart

GETHEX

SHEX

SHEX

RET

No (0)

Yes (1)

No (0)

Yes (1)

SHEX

RET

<

>

<

>

Sets error flag
(ERRFLAG) to 1

Clears error flag
(ERRFLAG) to 0

Shifts low-order 4 bits of
[WHL] to left
Low-order 4 bits of
[WHL] <– conversion
result

Error (CY)

Converts 1 ASCII
code to 1 hexadecimal
code

Reads 2nd code of
ASCII codes
 A <– C

Low-order 4 bits of
[WHL] <– conversion
result

Error (CY)

Converts 1 ASCII
code to 1 hexadecimal
code

≤

≥

≥

≤

A <– A – 37H CY <– 1

A: 'F'

A: 'A'

A: '9'

A: '0'

A <– A – 30H

Reads 1st code of
ASCII codes

 A <– B

92

78K/IV SERIES APPLICATION NOTE

(8) Program listing

• Labels/flags used for execution of application routine

ASCDAT : Highest address of the RAM area containing the two ASCII codes (2 bytes) to be

converted

HEXDAT : Address of the RAM area containing the two hexadecimal codes (1 byte) resulting from

the conversion

ERRFLAG : Error flag

ERRFLAG = 0 … No error occurred

ERRFLAG = 1 … An error occurred

• Example program listing for main routine

•

•

MOVW BC, ASCDAT

MOVG WHL, #HEXDAT

CALL !GETHEX

BT ERRFLAG, $ERROR

BR $$

ERROR:

CLR1 ERRFLAG ; clear error flag
•

•

Remark Set the WHL register as shown above, then call the subroutine. Prepare and add error

processing as necessary.

93

CHAPTER 6 DATA EXCHANGE PROCESSING

• Program listing for this application routine

NAME GHEXR
;***
;* transform HEX <– ASCII *
;* (2code) (2code) *
;* input condition *
;* BC-register <– ASCII *
;* output condition *
;* (WHL) <– hex *
;***

PUBLIC GETHEX

PUBLIC SHEX

EXTBIT ERRFLAG ;

CSEG

GETHEX:

MOV A, B ; ASCII upper-code load
CALL !SHEX ; get hex 1th code
BC $ERGTHEX

ROL4 [WHL]

MOV A, C ; ASCII lower-code load
CALL !SHEX ; get hex 2th code
BC $ERGTHEX

ROL4 [WHL]

GTHEX1:

CLR1 ERRFLAG ;no error
RET

ERGTHEX:

SET1 ERRFLAG ;set error
RET

;***

;* subroutine / get hex 1-code(Acc) *

;***

SHEX:

CMP A, #’0’ ; check / ASCII < 30H
BC $ERSHEX

CMP A, #’9’+1 ; check / ASCII > 39H
BNC $SHEX1

SUB A, #30H

BR ENDSHEX

SHEX1:

CMP A, #’A’ ; check / ASCII < 41H
BC $ERSHEX

CMP A,#’F’+1 ; check / ASCII > 46H
BNC $ERSHEX

SUB A, #37H

BR ENDSHEX

ERSHEX:

SET1 CY ;set error (CY <– 1)
ENDSHEX:

RET

94

78K/IV SERIES APPLICATION NOTE

6.4 CONVERTING A HEXADECIMAL CODE TO AN ASCII CODE

(1) Outline of processing

This section presents an example program that converts two (1-byte) hexadecimal codes (00H through

0FH) to two (2-byte) ASCII codes (30H through 39H and 41H through 46H).

The ASCII codes and hexadecimal codes correspond as follows:

 Hexadecimal code 0H 1H 2H 3H 4H 5H 6H 7H 8H 9H

 ASCII code 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H

 Hexadecimal code AH BH CH DH EH FH

 ASCII code 41H 42H 43H 44H 45H 46H

(2) RAM area

(3) Registers

A, B, C, and WHL registers

(4) Input

Set the following address in the WHL register.

WHL: Address of the RAM area containing the two hexadecimal codes to be converted

(5) Output

The following contents are stored into the BC register.

BC: Two ASCII codes resulting from the conversion

WHL

Two-hexadecimal-code
storage area

95

CHAPTER 6 DATA EXCHANGE PROCESSING

(6) Program description

(a) Reads the first code (high-order 4 bits) of the two-hexadecimal-code storage area, indicated by

register WHL, into the A register.

(b) Checks whether the contents of the A register are greater than 10. If they are less than 10, proceeds

to step (d).

(c) Adds 7 to the contents of the A register.

(d) Adds 30H to the contents of the A register.

(e) Stores the contents of the A register into the B register.

(f) Reads the second code (low-order 4 bits) in the two-hexadecimal-code storage area, indicated by the

WHL register, into the A register.

(g) Performs steps (b) and (c), then stores the contents of the A register into the C register.

96

78K/IV SERIES APPLICATION NOTE

(7) Flowchart

GETASC

SASC

RET

SASC

RET

A <– high-order
4 bits of [WHL]

Stores conversion
result

Converts 1
hexadecimal code
to 1 ASCII code

A <– lower 4 bits of
[WHL]

 B <– A
Stores conversion
result

Converts 1
hexadecimal code
to 1 ASCII code

A <– 0

A <– 0

A <– A + 30H

A <– A + 07H

A: 0AH

≥

<

C <– A

97

CHAPTER 6 DATA EXCHANGE PROCESSING

(8) Program listing

• Labels/flags used for execution of application routine

HEXDAT: Address of the RAM area containing the two hexadecimal codes (1-byte) to be converted

ASCDAT: Highest address of the RAM area containing the two ASCII codes (2-byte) resulting from the

conversion

• Example program listing for main routine

•

•

MOVG WHL, #HEXDAT

CALL !GETASC

MOVW ASCDAT, BC

BT ERRFLAG, $ERROR

BR $$

ERROR:

CLR1 ERRFLAG ; clear error flag
•

•

Remark Set the WHL register as shown above then call the subroutine. Prepare and add error

processing as necessary.

98

78K/IV SERIES APPLICATION NOTE

• Program listing for this application routine

NAME ASCII
;***
;* transform ASCII <– HEX *
;* (2code) (2code) *
;* input condition *
;* (WHL) <– hex 2-code *
;* output condition *
;* BC-register <– ASCII 2-code *
;***

PUBLIC GETASC

PUBLIC SASC

;

CSEG

GETASC:

MOV A, #0

ROL4 [WHL] ; hex upper code load
CALL !SASC

MOV B, A ; store result

MOV A, #0

ROL4 [WHL] ; hex lower code load
CALL !SASC

MOV C, A ; store result
RET

;***

;* subroutine / get ASCII 1-code(BC-register) *

;***

SASC:

CMP A, #0AH ; check / hex > 9
BC $SASC1

ADD A, #07H ; bias (+7)
SASC1:

ADD A, #30H ; bias (+30H)
RET

CHAPTER 7 DATA PROCESSING

As an illustration of data processing, this chapter presents example programs that sort and search for data.

7.1 SORTING 1-BYTE DATA

(1) Outline of processing

This section presents an example program that sorts the 1-byte data in a data file into ascending order.

The bubble sort method is used to sort the data.

Bubble sort involves comparing data with the subsequent data in the series, starting from the first item

of data, exchanging the two data items if they are not in order. Once the last item of data in the series

has been compared, processing returns to the first item of data. The procedure is repeated until no further

exchange of data occurs.

(2) RAM area

(3) Registers

A, BC, and WHL registers (However, the WHL register is reserved.)

(4) Input

Set the following data in the WHL and BC registers.

WHL: Address of the RAM area into which the data is to be sorted

BC : Number of items of data (number of bytes) to be sorted

(5) Output

The following contents are stored into the RAM area indicated by the WHL register.

WHL to WHL+BC–1: Data is sorted into ascending order

WHL WHL+BC–1

Sorted data
storage area

99

100

78K/IV SERIES APPLICATION NOTE

(6) Program description

This program uses the bubble sort method to sort data.

The processing procedure is as follows.

(a) Clears the exchange flag (CHGFLAG) that indicates that exchange has been executed to 0.

(b) By using the BC register as a byte counter to indicate the number of bytes of data to be sorted,

decrements the byte counter. If the value of the byte counter is 0, terminates the sort processing.

(c) Saves the WHL and BC registers.

(d) Compares the value in the sorted data storage area indicated by the WHL register ([WHL]) with the

value in the sorted data storage area indicated by WHL register + 1 ([WHL+1]).

If [WHL] < [WHL+1], jumps to step (e).

If [WHL] ≥ [WHL+1], jumps to step (f).

(e) Exchanges the contents of the sorted data storage area indicated by the WHL register with the contents

of the sorted data storage area indicated by the WHL register + 1, then sets the exchange flag

(CHNGFL) to 1.

(f) Increments the WHL register indicating the address of the sorted data storage area, then decrements

the byte counter (BC register).

(g) If the value of the byte counter (BC register) is other than 0, repeats steps (d) through (f).

(h) Restores the data for sorting, saved in step (c), into the WHL register that indicates the address of

the sorted data storage area, and into the BC register indicating the number of bytes in the data

arrangement.

(i) Repeats steps (a) through (h) if the exchange flag (CHGFLAG) is set to 1. Otherwise, ends the sorting

processing.

101

CHAPTER 7 DATA PROCESSING

(7) Flowchart

SORT

Yes

No

SORT2

No

Yes

SORT3

No

Yes

Yes

No

RET

Restores BC, WHL

Clears exchange flag
 CHNGFL <– 0

Saves BC, WHL

Sets exchange flag
CHNGFL <– 1

CHNGFL = 1

BC = 0

BC <– BC – 1

WHL <– WHL + 1

[WHL] <– [WHL+1]

[WHL+1] > [WHL]

BC = 0

BC <– BC – 1

102

78K/IV SERIES APPLICATION NOTE

(8) Program listing

• Labels used for execution of application routine

SORTDAT : First address of data array to be sorted

BC register: Number of data items to be sorted

CHGFLAG : Flag indicating whether data items have been exchanged

CHGFLAG = 1 … Data items have been exchanged

CHGFLAG = 0 … Data items have not been exchanged

• Example of program listing for main routine

•

•

MOVW BC, #10H ; data length is 16 bytes
MOVG WHL, #SORTDAT

CALL !SORT

•

•

Remark Set the BC and WHL register as shown above, then call the subroutine.

103

CHAPTER 7 DATA PROCESSING

• Program listing for this application routine

NAME SORTR

;***
;* bubble sort *
;* input condition *
;* BC-register <– number of data *
;* WHL-register <– data top.address *
;* output condition *
;* WHL-register <– data top.address *
;***

PUBLIC SORT

;

BSEG ;

CHGFLAG DBIT ; change-flag
;

CSEG

SORT:

CLR1 CHGFLAG ; change-flag <– 0
DECW BC

MOV A, B

OR A, C

BNZ $SORT1

BR ENDSORT

SORT1:

PUSH BC ; save pointer/counter
PUSH WHL

SORT2:

MOV A, [WHL] ; change process
CMP A, [WHL+1]

BC $SORT3 ; A <= [WHL+1] goto $SORT3
BZ $SORT3

XCH A,[WHL+1]

MOV [WHL], A

SET1 CHGFLAG ; change-flag <– 1
SORT3:

INCG WHL ; pointer increment
DECW BC

MOV A, B

OR A, C

BNZ $SORT2

POP WHL ; restore pointer/counter
POP BC

BT CHGFLAG, $SORT

ENDSORT:

RET

104

78K/IV SERIES APPLICATION NOTE

7.2 SEARCHING FOR DATA

(1) Outline of processing

This section presents an example program that searches for specific data and returns the corresponding

storage address once that data has been found. Binary search is used to search for data.

Binary search involves searching for a specified data string in a collection of data.

In this example, a collection of data that has been sorted into ascending order is searched. The data to

be searched is compared with the intermediate value for the collection of data, half the collection of data

being deleted depending on which of the searched data or intermediate value is greater. By executing

this operation repeatedly, the specified data can be located.

(2) RAM area

(3) Registers

A, BC, WHL, UUP, and VVP registers

(4) Input

Set the following data in the A, WHL, and BC registers.

A : Data to be searched

WHL : First address of the searched data storage area (in which data has already been sorted into

ascending order)

BC : Amount of data (bytes) to be searched

(5) Output

The following flag indicates the status of the search processing.

CY: Carry flag

CY = 0 … End of search

CY = 1 … Specified data could not be found

The following contents are stored into the WHL register.

WHL register: Address of the searched dataNote

Note If the specified data is not found, the value of the WHL register will be undefined.

WHL WHL+BC–1

Searched data
storage area

105

CHAPTER 7 DATA PROCESSING

(6) Program description

This program uses binary search. The processing procedure is described below.

(a) Writes the first address of the searched data storage area into the UUP register, and the last address

of the searched data storage area into the VVP register.

(b) Compares the first address of the searched data storage area (UUP register) with the last address

of the searched data storage area (VVP register).

If UUP register ≤ VVP register, proceeds to step (d).

If UUP register > VVP register, proceeds to step (c).

(c) Sets the carry flag (CY) to 1 then terminates the processing.

(d) Sets the intermediate address of the searched data storage area (intermediate address indicated by

the UUP and VVP registers) into the WHL register.

(e) Compares the searched data with the contents of the intermediate address of the searched data

storage area indicated by the WHL register (intermediate address indicated by the UUP and VVP

registers). If the searched data coincides with the contents of the intermediate address (i.e., when

the data has been found), ends the search processing.

(f) If the carry flag (CY) is 1, executes “VVP <– WHL – 1” then sets a new last address. If the carry flag

is 0, executes “UUP <– WHL + 1”, sets a new first address, then returns to step (c).

106

78K/IV SERIES APPLICATION NOTE

(7) Flowchart

SEARCH

SEARC1:

Yes

No

Yes

No RET

A < [WHL]

A = [WHL]

Yes

No

UUP > VVP

Updates upper-limit
address
 VVP <– WHL – 1

Updates lower-limit
address
 UUP <– WHL + 1

Compares searched
data with contents of
[WHL]

Sets intermediate
address
WHL <– (VVP – UUP)/
2 + UUP

VVP <– upper-limit address
UUP <– lower-limit address

CY <– 1

107

CHAPTER 7 DATA PROCESSING

(8) Program listing

• Labels used for execution of application routine

SORTDAT: First address of data array to be sorted

• Example program listing for main routine

•

•

MOVW BC, #10H

MOVG WHL, #SEACHDAT

MOV A, #0AAH

CALL !SEARCH

•

•

Remark Set the BC, WHL, and A registers as shown above, then call the subroutine.

108

78K/IV SERIES APPLICATION NOTE

• Program listing for this application routine

NAME SEARCR
;***
;* binary search *
;* input condition *
;* A-register <– search data *
;* BC-register <– number of data *
;* WHL-register <– data top.address *
;* output condition *
;* WHL-register <– found data address *
;***

PUBLIC SEARCH

CSEG

SEARCH:

MOVG UUP, WHL ; UUP-register <– lower.address
DECW BC

MOVG VVP, #0

MOVW VP, BC

ADDG VVP, UUP ; VVP-register <– upper.address
SEARC1:

MOVG WHL, VVP

SUBG WHL, UUP

BC $SEARC4 ;search end check
SHRW HL, 1

ADDG WHL, UUP

CMP A, [WHL]

BNZ $SEARC2

BR SEARC5 ;found data
SEARC2:

BC $SEARC3

INCG WHL ; ’CY’ = 0
MOVG UUP, WHL

BR $SEARC1

SEARC3:

DECG WHL ;’CY’ = 1
MOVG VVP, WHL

BR $SEARC1

SEARC4:

SET1 CY

SEARC5:

RET

